

B.TECH IN COMPUTER SCIENCE AND ENGINEERING(ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)

PROGRAM EDUCATIONAL OBJECTIVES

- Prepare and train students in theoretical foundations to work with cutting edge computing technologies and design solutions to complex engineering problems, making them ready to work in industrial environment.
- Develop all round skills such as team building, inter-personal skills, and leadership qualities in order to effectively communicate with engineering community and with society at large.
- Promote research culture through internships, research assistantships, research-oriented projects, sponsored and collaborative research and enable them to pursue higher studies in computer science and related fields.
- To inculcate social concern meeting the requirements of prospective employers and to develop an ability to innovate efficient computing solutions for a better society.
- Create professionally superior and ethically strong globally competent employees and entrepreneurs.

PROGRAM OUTCOMES

- Apply mathematical and theoretical principles in the modeling and design of high-quality computer-based systems using state-of-the-art computer technology.
- Conduct in-depth study of research literature in the area of Computer Science, analyse problems in order to arrive at substantiated conclusions using first principles of mathematics, and allied sciences.
- Design, implement and evaluate Computer Systems, programs and processes that meet partial/complete specifications with concern for society, environment, and culture.
- Design and conduct experiments, collect data, analyze, and interpret the results to investigate complex engineering problems in the field of Computer Science.
- Apply state-of-the-art techniques and modern computer-based tools in prediction, comparison, and modeling of complex engineering activities.
- Have a sound understanding of professional, legal, security and social issues and responsibilities in engineering activities involving Computer Science.
- Understand societal and environmental concerns and demonstrate responsibility in sustainable development of computer-based solutions.
- Be aware of ethical and professional responsibilities in engineering situations; make informed judgments regarding intellectual property and rights in relation to computer-based solutions in global, economic, environmental and societal contexts.
- Able to function effectively in teams to establish goals, plant asks, meet deadlines, manage risk, and produce high-quality technical solutions.
- Contribute and communicate effectively with the society, be able to write effective reports and design documents by adhering to appropriate standards, make effective presentations, give, and receive clear instructions.
- Apply skills in clear communication, responsible teamwork, and time management by, for example, managing a team or project and communicating with external stakeholders.
- Recognize the need for and demonstrate an ability to engage in continuing professional development in its broadest sense.

B.TECH IN COMPUTER SCIENCE AND ENGINEERING (ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING) I SEMESTER (2025-29 BATCH)

SI.	Course Code	Course Title		Hours	per w	eek	Credits	Tools/Languages	Course Type
0			L	т	Ρ	S	С		
1	UE25CS151A	Python for Computational Problem Solving	4	0	2	5	5	Python interpreter 3.8 and above. IDLE and any IDE like Jupyter. Copilot aided teaching - Not copilot driven course Chatgpt	FC- Lab Integrated

II SEMESTER (2025-29 BATCH)

SI.	Course Code	Course Title	l	Hours	per we	ek	Credits	Tools /Languages	Course Type	
0	course coue	L		т	Ρ	S	С	10013/Languages		
1	UE25CS151B	Problem Solving with C	4	0	2	5	5	C Programming Language GCC Compiler, GDB Debugger AI Tools- Code 5, DeepCode, Codium, Alcode Helper	FC- Lab Integrated	

SI. No	Course Code	Course Title	Hours per week		Credits	AI Tools/ Tools/Languages	Course Type		
			L	т	Ρ	S	С		course rype
1	UE24CS251A	Digital Design and Computer Organization	4	0	2	5	5	Logisim- for circuit simulation, Logically- for circuit simulation	CC- Lab Integrated
2	UE24CS252A	Data Structures and its Applications	4	0	2	5	5	C-Programming language Visu Algo (Interactive Visualizations), Algorithm Visualizer (AI Explanations)	CC-Lab Integrated
3	UE24CS241A	Mathematic s for Computer Science and Engineering	4	0	0	4	4	Jupyter Notebook, Python, Pandas, Matplotlib, Scipy, Seaborn, BeautifulSoup, Numpy, Scikit learn. R (R Studio) and Python, Orange.	CC- Independent
4	UE24CS242A	Web Technologies	4	0	0	4	4	HTML, CSS, JavaScript, MERN Technologies. GitHub Copilot and Tabnine	CC- Independent
5	UE24CS243A	Automata Formal Languages and Logic	4	0	0	4	4	PLY, JFLAP AI Tool - https://www.opentrain.a i/glossary/automata- theory https://www.yeschat.ai/ gp ts-9t55kXLEUfB- AutomataExpert	CC- Independent
6	UE24EC231A	CIEL1	2	0	0	2	2		CC- Independent
7	UE25MA231A	Bridge Course Mathematics– I (Applicable for The Lateral Entry Students)	2	0	0	2	0		FC- Independent
	Total			0	4	24/ 26	24		

III SEMESTER (2024-28 BATCH)

- T

SI.	Hours per week C	Credits							
No.	Course Code	Course Title	L	т	Р	S	С	AI Tools/ Tools/Languages	Course Type
1	UE24CS251B	Microprocessor and Computer Architecture	4	0	2	5	5	ARM Simulator, Arduino Microcontroller kit, Para Cache simulator. Compute intensive Application are run on GPU systems	CC-Lab Integrated
2	UE24CS252B	Computer Networks	4	0	2	5	5	Wireshark, Python. Advanced-Computer Networking-Tutor Computer Network Professor (yeschat.ai)Al	CC-Lab Integrated
3	UE24CS241B	Design and Analysis of Algorithms	4	0	0	4	4	C-Programming language Visu Algo (Interactive Visualizations), Algorithm Visualizer (AI Explanations)	CC- Independent
4	UE24CS242B	Operating Systems	4	0	0	4	4	C, Linux/ Unix OS for system call implementation	CC- Independent
5	UE24MA241B	Linear Algebra and its Applications	4	0	0	4	4	Python IDE, MathGPT, Deepseek	CC- Independent
6	UE24EC221B	CIEL2	2	0	0	2	2		CC- Independent
7	UE25MA221B	Bridge Course Mathematics–II (Applicable to Lateral Entry Students)	2	0	0	2	0		FC- Independent
Total			24/26	0	4	24/ 26	24		

IV SEMESTER (2024-28 BATCH)

SI.	Course		Hours per week			ζ.	Credits		
No.	Code	Course Title	L	т	Р	S	С	AI Tools/ Tools/Languages	Course Type
1	UE23CS351A	Database Management System	4	0	2	5	5	MySQL Work bench, Python, ERwin, Any other tool for ER modeling Bytebase SQL Editor, Chat2DB	CC-Lab Integrated
2	UE23CS352A	Machine Learning	4	0	2	5	5	NetworkX for statistical features of graphs, Tensor flow, Keras, and Scikit Learn for traditional graph ML, and Pytorch Geometric for Graph Neural Networks. Google cloud Vertex AI(end-to-end ML platform), Amazon Sagemaker, IBM Watson studio, Auto ML tools (H2O.ai (H2O AutoML), Google AutoML, Hugging Face, Haystack etc	CC-Lab Integrated
3	UE23CS341A	Software Engineering	4	0	0	4	4	Git, GitHub, docker, Jenkins, gtest, pytest, Jira/OpenProject, SonarQube.	CC- Independent
4	UE23AM342AAX	Elective I	4	0	0	4	4		EC
5	UE23AM343ABX	Elective II	4	0	0	4	4		EC
6	UE23AM320A	Capstone Project Phase-I	0	0	8	4	2		PW
	Total		20	0	12	24	24		
				El	ective–l				
7	UE23AM342AA1	Advanced Foundations for ML	4	0	0	4	4	Pytorch, SkLearn, Keras, Tensorflow Google cloud Vertex AI (end to-end ML platform).	EC- Independent
8	UE23AM342AA2	Active Learning	4	0	0	4	4	Pytorch, SkLearn, Keras, Tensorflow Google cloud Vertex AI (end to-end ML platform)	EC- Independent
9	UE23AM342AA3	Social Computing	4	0	0	4	4	NetworkX, along NLTK, Spacy, PyTorch, etc	EC- Independent

V SEMESTER (2023-27 BATCH)

10	UE23AM342AA4	AI for Smart Manufacturing	4	0	0	4	4	OracleERP, Salesforce CRM, SCM applications and tools, MLtools	EC- Independent
11	UE23AM342AA5	AI for Medical Imaging	4	0	0	4	4	Python, Tensorflow/PyTorch, ImageJ, MATLAB.	EC- Independent
12	UE23CS342AA3	Internet of Things	4	0	0	4	4	Python,Embedded-C, CloudPlatforms, SingleBoard Computers	EC- Independent
13	UE23CS342AA4	Applied Cryptography	4	0	0	4	4	SEED labs, Python ProgrammingLanguage	EC- Independent
14	UE23CS342AA5	Virtual and Augmented Reality	4	0	0	4	4	C/C++/JAVA/ Python using OpenGL. Unit3D, ThreeJS, Blender, Cloud Compare, OpenGL, Unity ML Agents	EC- Independent
15	UE23CS342AA7	Topics in Wireless Networks and 5G	4	0	0	4	4	Cisco Packet Tracer, OMNET++	EC- Independent
				Ele	ective–I	1			
16	UE23AM343AB1	Advanced Data Analytics	4	0	0	4	4	Python and related libraries for Machine learning and Causal Inference.	EC- Independent
17	UE23AM343AB2	Privacy Preserving Machine Learning	4	0	0	4	4	Python tools and librariesused for PPML, such as PySyft.	EC- Independent
18	UE23AM343AB3	Optimizations and Metaheuristics	4	0	0	4	4	scikit-opt and scikitlearn, pyswarm, scipy, DEAP, etc	EC- Independent
19	UE23AM343AB4	Supply Chain Optimization using Al	4	0	0	4	4	Python and various search and optimization libraries.	EC- Independent
20	UE23AM343AB5	Machine Learning with Business Data	4	0	0	4	4	Python as ScikitLearn, XGBoost,Light GBM, CatBoost,TabNet, Pytorch Tabular.	EC- Independent
21	UE23CS343AB5	Advanced Computer Networks	4	0	0	4	4	GNS3, Cisco Packet Tracer, Mininet.	EC- Independent
22	UE23CS343AB6	Computer Network Security	4	0	0	4	4	SEED Ubuntu VM, Wireshark, Snort, Netwox, Scapy.	EC- Independent
23	UE23CS343AB7	ROS for autonomous system	4	0	0	4	4	C++,Python,Java, ROS,Rviz, Gazebo and Webots.	EC- Independent

	ELECTIVES TO BE OPTED FOR SPECIALIZATION											
SI. No.	SPECIALIZATION	ELECTIVE-I	ELECTIVE–II									
A	Applied and Advanced Machine Learning (AAML)	UE23AM342AA1, UE23AM342AA2, UE23AM342AA3.	UE23AM343AB1, UE23AM343AB2, UE23AM343AB3.									
в	Al for Industry (All)	UE23AM342AA4, UE23AM342AA5.	UE23AM343AB4, UE23AM343AB5.									
С	Cyber Security & Connected Systems (CSCS)	UE23CS342AA3, UE23CS342AA4, UE23CS342AA5. UE23CS342AA7.	UE23CS343AB5, UE23CS343AB6, UE23CS343AB7									

VI SEMESTER (2023-26 BATCH)

SI.	Course Code	Course Title	Hours per week			ek	Credits	AI Tools/ Tools/Languages	Course Type
No			L	т	Р	S	С		
1	UE23CS351B	Cloud Computing	4	0	2	5	5	Amazon AWS (or equivalent), AWS Skill Builder, AWS Educate, Qwiklabs, Docker, Kubernetes, Jenkins, Zookeeper, Github, NoSQL database, Flask, Python, Go Lang. AWS, Sagemaker	сс
2	UE23CS352B	Object Oriented Analysis and Design	4	0	2	5	5	Star UML, Object Oriented Programming Language(Java/C++)	СС
3	UE23CS341B	Compiler Design	4	0	0	4	4	Lex/flex and YACC/Bison. Compiler Explorer + AI Explanation	СС
4	UE23AM342BAX	Elective III	4	0	0	4	4		EC
5	UE23AM343BBX	Elective IV	4	0	0	4	4		EC
6	UE23AM320B	Capstone Project Phase - II	0	0	8	2	2		PW
Total			20	0	12	24	24		
				Ele	ective-	-111		•	
7	UE23AM342BA1	Interdisciplinary Deep Learning on Graphs	4	0	0	4	4	Pytorch Geometric for Graph Neural Networks	EC- Independent
8	UE23AM342BA2	Large language Models and Their Applications	4	0	0	4	4	Python as Scikit Learn, XGBoost,Light GBM.	EC- Independent
9	UE23AM342BA3	Explainable Al	4	0	0	4	4	Python Tools and Libraries.	EC- Independent
10	UE23AM342BA4	Deep Learning for Life Sciences	4	0	0	4	4	Python Tools and Libraries.	EC- Independent
11	UE23AM342BA5	Intelligent Systems with Knowledge Graphs	4	0	0	4	4	Python, Neo4J, Networkx, NLP Libraries.	EC- Independent
12	UE23CS342BA5	BlockChain	4	0	0	4	4	Solidity, Ganache, Meta mask. RemixID, Ganache tool	EC- Independent

13	UE23CS342BA6	Digital Forensics and Incident Response	4	0	0	4	4	Open source tools on Forensics. Cellebrite,Deepfake Detection Tools	EC- Independent				
14	UE23CS342BA7	Digital Twin	4	0	0	4	4	C/C++/JAVA/Python using OpenGL. Luma Labs Genie, 3D CSM, Skybox Blockade Labs, SIMENS Digital Twin Tool.	EC- Independent				
15	UE23CS342BA8	Cloud Security	4	0	0	4	4	AWS Security Services	EC- Independent				
Elective–IV													
16	UE23AM343BB1	Natural Language Processing with Deep Learning	4	0	0	4	4	Python, Pytorch, and NLP libraries such as Spacy, NLTK, Open AI, andHuggingface	EC- Independent				
17	UE23AM343BB2	Deep Reinforcement Learning	4	0	0	4	4	Pytorch, Python Libraries and tools.	EC- Independent				
18	UE23AM343BB3	Deep Learning for Images	4	0	0	4	4	TensorFlow, PyTorch, OpenCV, Jupyter Notebooks.	EC- Independent				
19	UE23AM343BB4	Machine Learning for Finance	4	0	0	4	4	TensorFlow, PyTorch, OpenCV, Jupyter Notebooks.	EC- Independent				
20	UE23AM343BB5	Large Language Models Agent	4	0	0	4	4	HuggingFace, LangChain, CrewAI, OpenAI, FAISS, DevOps: Docker, GitHub Actions, Deployment: Streamlit, FastAPI.	EC- Independent				
21	UE23CS343BB6	Information Security	4	0	0	4	4	SEED Labs VM, Scapy, Burp Suite, Metasploit, Nmap,etc	EC- Independent				
22	UE23CS343BB7	Mobile Autonomous Robotics	4	0	0	4	4	Wireshark, Yersinia, VoIP Hopper, Bettercap,aircrack-ng	EC- Independent				
23	UE23CS343BB8	Security for IoT	4	0	0	4	4	Wireshark, Yersinia, VoIP Hopper, Bettercap, aircrackng	EC- Independent				

24	UE23CS343BB9	Applied ML in IoT	4	0	0	4	4	Arduino Nano 33 BLE sense Arduino IDE Google Colab	EC- Independent				
	ELECTIVES TO BE OPTED FOR SPECIALIZATION												
SI. No.	SPE			ELECT	IVE–III		ELECTIVE-IV						
А	Applied and Advar (AAML)	ן ו א	JE23AI JE23AI JE23AI UE23A	M342E M342E M342E M342E	BA1, BA2, BA3, BA4	UE23AM343BB1, UE23AM343BB2, UE23AM343BB3. **UE23AM342BA5							
В	Al for Industry (All	*	UE23A *UE23	M342 AM34	BA4 2B5	UE23AM343BB4, UE23AM343BB5							
с	Cyber Security & C	Connected Systems (C	SCS)	U U U U	UE23CS342BA5, UE23CS342BA6, UE23CS342BA7, UE23CS342BA8.		5, 6, 7, 8.	UE23CS343BB6, UE23CS343BB7, UE23CS343BB8, UE23CS343BB8, UE23CS343BB9.					

Note : * and ** are offered both as part of AAML and AII

SI	Course Code	Course Title		Hours	/week	Credits		
No.	course coue	course ritie	L	Т	Р	S	С	course rype
1	UE22AM461A	Capstone Project Phase-III	0	0	16	4	4	PW
2	U22AM421AX	Special Topic/ Directed Independent Study - Swayam/MOOC		2/4/4		2	6	ST
	Total			2/4/4	20	6	10	

VII SEMESTER (2022-26 BATCH)

VIII SEMESTER (2022-26 BATCH)

SI.	Course Code		Hours/we	ek		Credits	Course Type	
No	course coue	course mile	L	Т	Р	S	С	
1	UE22AM421B	Capstone Project Phase-4	0	0	8	2	2	PW
2	UE22AM421XB	Special Topic/ Directed Independent Study– Swayam/MOOC.	2	0	0	2	2	ST
3	UE22AM461XB	Internship	0	0	12	6	6	PW
	Total	2	0	20	10	10		

Course Code	UE25CS151A	Course Title	Python	For Compu	tational Prol	blem Solv	/ing
Program	B.Tech CSE(AI & ML)	Hours per week/	L	т	Ρ	S	С
		Credit Assigned	4	0	2	5	5
Semester	1	Type of Course	Core				
Al Tools /Tools/Language s	Python interpreter 3.8 and above. IDLE and any IDE like Jupyter. Copilot aided teaching	Desirable Knowledge	-				
Prelude	Python is an easy to learn, general- data structures and a simple but eff syntax and dynamic typing, togethe and rapid application development	purpose, powerfu fective approach er with its interpro in many areas or	ful programming language. It has efficient high-level n to object-oriented programming. Python's elegant reted nature, make it an ideal language for scripting on most platforms.				
Course Objectives:	 Understand the syntax and semantics of Python programming language. Apply the process of structuring the data using lists, tuples, sets and dictionaries. Utilize the use of built-in functions to navigate the file system. Explore various paradigms of programming and implement the Object-Oriented Programming concepts in Python. 						
Course Contents	Unit 1: Introduction Computer, Computational Proble Software, System Software - Oper to Python Programming Language types and id, input function, opera pythonic solution.	oduction Computational Problem Solving, Algorithm, Computer Hardware &Software(Application system Software - Operating System),Syntax, semantics and program translation. Introduction Programming Language, IDLE Python Development Environment, Output function, variables, d, input function, operators and expressions, Control structures. Standards and Guidelines for plution.					
	Unit 2: Collections & Functions Lists, Tuples, Dictionaries, Sets, Strings, and text file manipulation: reading and writing files. Functions: Definition, call, Positional and keyword parameter, Default parameters, Variable number of arguments. 14 Hours Unit 3: Functions GUI Modules, Testing and Debugging						
	Recursion, Call-backs, Closure, De mechanisms. Introduction to mod Pytest , Function testing with Doc	corators, generat ules – Numpy, Pyl test, pdb debugge	ors. Graph mage, nltk er commar	ical User Int , sklearn, Re nds, Debuggi	erface with gular Expres ng using IDL	WxPytho sions – re E.	n, import e, Testing-
	Unit 4: Functional & Object Orien Lambda function, Map, filter, and Classes and objects-inheritance, p raise, exception propagation.	ted Programmin, reduce,max,min,z olymorphism, ite	g Zip, listcom rators,Erro	prehension r handling 8	Exceptions	-try,exce	pt and
							14 Hours

Laboratory	 Exploring IDLE, Programs on Input Output Functions, Operators and Expressions and Usage of Libraries Programs on Control Structures. Programs on Collections(Lists, Tuples, Sets, Dictionaries, Strings). Programs on Files and File manipulations. Programs on Functions, Recursion and Callback Programs on Functional Programming. Programs on Object Oriented Programming. Programs on Pytest and pdb and one application module. GUI programming (using wxPython)
TextBook(s):	 Allen B.Downey, "Think Python:How to Think Likea Computer Scientist", 2nd Edition, Green Tea Press, 2015. (Available under CC-BY-NC license at http://greenteapress.com/thinkpython2/thinkpython2.pdf (Chapters 13, 15, 16, 17, 18) (Download pdf/html files from the above link). Automate the Boring Stuff with Python", Al Sweigart, 1 st Edition, No Starch Press, 2015. (Available under CC-BY-NC-SA license at <u>https://automatetheboringstuff.com/</u>). "Python Programming using Problem Solving approach", Reema Thareja, Second Edition, Oxford University Press, 2017. "Fundamentals of Python Programming" by Richard L. Halterman, Course Technology ptr, 2018.
Reference Book(s):	 1: "Introduction to Computer Science Using Python: A Computational Problem-Focus", Charles Dierbach, Wiley India Edition, John Wiley, 2015. 2. "Learn python Programming", Fabrizio Romano, 2nd Edition, Packet Publishing, 2018. "Fundamentals of Python: First Programs", Kenneth A.Lambert, Cengage, 2019. "Introduction to Computation and Programming Using Python: With Application to Understanding Data", John V. Guttag, MIT Press, MIT with Library of Congress Cataloguing- in-Publication Data, 2016. "WxPython in action", By NOEL RAPPIN ROBIN DUNN.
Course Outcome	 Develop efficient programs using the Python language. Demonstrate the ability to create and manipulate lists, tuples and dictionaries. Perform common file system operations using built-in Python functionalities. Apply different paradigms of programming and interpret the concepts of Object-Oriented Programming as used in Python.

Course Code	UE25CS151B	Course Title	Probler	n Solving wi	th C		
Category	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	С
		Credit Assigned	4	0	2	5	5
Semester	2	Type of Course	Core				
AlTools /Tools/Languag es	C Programming Language GCC Compiler, GDB Debugger AI Tools- Code 5, Deep Code, Codium, Alcode Helper	Desirable Knowledge	-				
Prelude	The Problem Solving with C course introduces students to fundamental techniques for solving Common computational problems. Students will learn to analyse problem statements, design appropriate algorithms and implement efficient solutions. Emphasis is placed on using C language constructs to develop well structured and maintainable programs, thereby laying a strong foundation in both problemsolving and programming skills.						g Common Ilgorithms, velop well- olving and
Course Objectives:	 Acquire Develop the ability to solve relevant and logical problems using a computing machine through algorithmic thinking. Translate algorithmic solutions into programs by effectively utilizing C programming language constructs. Acquire a solid understanding of C language syntax, semantics, and its supporting ecosystem. Recognize and appreciate the nuances of C standards and understand their implications on program behaviour. 						
ourse Contents	Unit1: Problem Solving Fundamenta Introduction to Programming, Salien values ,Qualifiers, Operators and E Specifications-Behaviors, Single chara Unit2: Counting, Sorting and Searchin Arrays–1D and 2D,Pointers, Pointer Recursion, Searching, Sorting, Functio	Is t Features of 'C' Expressions, Cor cter input and or ng to an array, Arr ons, GUI, Module	, Program trol Struc utput, Cod ray of poir s, Testing ;	Structure, V tures, Inpur ing standard nters, Functi and Debuggi	ariables, Da t/Output Fu ls and guidel tons, Callbac ng.	taTypes & inctions, ines. :k, Storaę	& range of Language 14 Hours ge classes, 14 Hours
	Unit3:Text Processing and User-Defined Types Strings, String Manipulation Functions & amp; Error handling, Command line arguments, Dynamic Memory Management functions & amp; Error handling, Structures, #pragma, Array of Structures, Pointer to structures, Passing Structure and Array of structure to a function, Bit fields, Unions, Enums, Lists, Stack, Queue, Priority Queue. 14 Hours						
	Unit4: File Handling and Portable Pr File IO using redirection, File Handling User defined and Built-in functions Directives, Conditional Compilation.	ogramming g functions of C, S 5, Variable Leng	earching, S th Argume	Sorting, Head ents, Enviro	derfiles, Com nment varia	nparison (bles, Pre	of relevant eprocessor 14 Hours

Laboratory	 Programs on IO, Operators and Control structures. Programs on Arrays and Pointers, Functions using arrays and pointers. Programs on Strings, Structures and Dynamic Memory Management functions Programs on Structures and Array of structures. Programs on Inclusion of files using redirection operator. Programs using File handling functions in C –Sorting and Searching using Array of pointers to structures. Implementation of Ordered List Implementation of Priority based scheduling. Programs on unions, enums and Preprocessor directives.
TextBook(s):	1:"The C Programming Language", Brian Kernighan and Dennis Ritchie, Prentice Hall PTR, 2 nd Edition, 1988.
Reference Book(s):	 "How To Solve It By Computer", R G Dromey, Pearson, 2011. "C Programming: A Modern Approach",2nd Edition by K.N.King, W.W.Norton & Company. "Learn C the Hard Way": Zed Shaw's Hard Way Series, 1st Edition. "C Puzzle Book" by Alan R. Fever, Pearson Education. "Expert C Programming: Deep C Secrets" by Peter Van Der Linden, Pearson Education.
Course Outcome	 Understand and apply algorithmic solutions to counting and other basic computational Problems using appropriate C construct. Understand, analyse, and implement fundamental sorting and searching techniques. Apply string manipulation and text processing methods using arrays, pointers, and functions. Design and implement user-defined data types using structures, unions, and other mechanisms in C, and demonstrate the ability to read from and write to secondary storage in a portable manner.

Course Code	UE24CS251A	Course Title	Digital	Design & Co	omputer Org	anization	I	
Program	B.Tech CSE(AI & ML)	Hours per week/	L	т	Р	S	С	
		Credit Assigned	4	0	2	5	5	
Semester	3	Type of Course	Core					
AITools /Tools/Languag es	Icarus Verilog Simulator, GTK Wave waveform viewer.(Open– Source Tool)	Desirable Knowledge	Basic Electronics					
	Logisim- for circuit simulation, Logically- for circuit simulation							
Prelude	This course focuses on the structure abstraction. The digital design part of computer organization part explains	e, design, and ope of the course des s the structure ar	peration of a computer system at different levels of scribes low level digital logic building blocks while the and operation of microprocessors.					
Course Objectives:	 Fundamental (combination Design of more complex log Design of Finite State Mac Construction using above log cycle level. 	al and sequentia gic circuits such a hines based on p ogic circuits, of a	al) building blocks of digital logic circuits. as adders, multipliers and register files. problem specification. a microprocessor, and its functioning at the clock					
Course Contents	Unit 1: Gate-Level Minimization a Introduction, The map method conditions, NAND and NOR im Procedure, Combinational logic-1: multiplier, Magnitude comparator	nd Combinationa Four variable K plementation, C Binary Combinat Decoders Encode	al logic-1 -map, Pro Combinatio ional logic ers, Multip	duct of Sum mal circuits : Adder- Sub lexers.	ms simplific , Analysis itractor, Dec	ation, Do procedure imal Adde	on't Care e Design er, Binary 14 Hours	
	Unit 2: Synchronous Sequential Lo Synchronous Sequential Logic: Int Analysis of clocked sequential circ counters: Registers, Shift register,	ogic-I croduction, Seque uits, State reduct Ripple counters,	Sequential circuits, Storage elements: Latches, Flip flops, reduction and assignment, Design procedure Registers and nters, Synchronous counters, Other counters. 14 Hours 14 Hours 17 I/O interface, Interrupts, Memory System Jnit, Memory Unit, ALU, Output Unit, Control Unit, Bas ion and arithmetic Operations, Character representation perations, Instruction and instruction sequencing ,Addressir Devices, Interrupts, Standard I/O Interfaces. Semi conduct of					
	Unit 3: Basic structure of compute Computer Types, Functional Unit operational concepts, Number re Memory locations and addresses, I modes, Assembly Languages, Acce RAM memories.	ers, Standard I/O ts: Input Unit, M epresentation ar Memory Operatio essing I/O Device						
			t Design 1	uith m t			14 110013	
	Multiplication of Positive numbers floating point numbers operatio complete instruction, Multiple Bu cycle processor data path and con	s, Signed operand n and Architect is Organization, H trol.	d Multiplic ure, Some lardwired	ation, Fast n e fundamen control , Sir	nultiplicatior tal concepts ngle- cycle, (n, Integer s, Execut Case Stud	division, ion of a ly: Multi- 14 Hours	

Laboratory	 Implementation of Basic gates. Implementation of Half adder and full adder. Implementation of Decoder, encoder and Priority encoder. Implementation of 4-to-1 multiplxer and 1-to-4 demultiplexer. Implementation of 4-bit magnitude comparator Implementation of BCD adder. Implementation of Flip-Flops (JK,T and D). Implementation of counters (Ripple,updown). Implementation of counters (Ring,Jonson). Implementation of 4-bit serial adder. Implementation of 5equential Binary multiplier.
TextBook(s):	 "Digital Design", M Morris Mano, Michael D Ciletti, Pearson, 5th Edition, 2012. "Computer Organization", Carl Hamacher, Zvonko Vranesic, Safwat Zaky, McGrawHill, 5th Edition, 2002.
Reference Book(s):	 Digital Design & amp; Computer Architecture, David Money Harris, Sarah L.Harris, 2nd Edition, Elsevier, 2013. Computer Organization and Design, David A.Patterson, JohnL.Hennessey 5th Edition, Elsevier.
Course Outcome	 Perform analysis of given synchronous digital logic circuit. Design and implement small to medium scaled at a path logic circuits from given specification. Design and implement control logic using Finite State Machines. Understand hardware level microprocessor operation, providing a foundation for the higher layers.

CourseCode	UE24CS252A	CourseTitle	Data st	ructures & i	ts Applicatio	ons		
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	С	
		week/ Credit Assigned	4	0	2	5	5	
Semester	3	Type of Course	Core					
Al Tools /Tools/Languag es	C-Programming language Visu Algo (Interactive Visualizations), Algorithm Visualizer (AI Explanations)	Desirable Knowledge	Problem Solving with C					
Prelude	This course provides a comprehensi both their theoretical foundations data and explores how these abstra gap between theory and practice by using a programming language. Equa implementation techniques, and the concepts but also apply them effect	ve introduction to and practical app ctions facilitate ef y demonstrating al importance is g neir real-world ap vively in software	to fundamental data structure concepts, emphasizing oplications. It begins with abstract representations of effective problem solving. The course then bridges the g how these concepts can be concretely implemented given to understanding the underlying principles, their applications, enabling students to not only grasp the e development					
Course Objectives:	 To introduce the fundamental concepts and methodologies for analyzing and designing data structures, fostering problem-solving skills for efficient data storage, retrieval, and manipulation. To explore and utilize various data structures such as arrays, linked lists, stacks, queues, trees, heaps, and graphs, emphasizing their suitability for different computational tasks and operations. To implement core operations—insertion, deletion, searching, and modification—across a variety of data structures in both linear and non-linear forms. To design and develop applications using appropriate data structures, demonstrating the ability to callect and apply the most suitable structure to solve real world problems effectively. 						ning data ipulation. es, trees, perations. -across a he ability	
Course Contents	Unit 1: Linked List and Stacks Review of C, Static and Dynamic Me Single and Double, Multilist: Introd implementation using skip list Stack Linked list. Applications of Stack: Conversion & Evaluation of an exp Matching of Parenthesis.	emory Allocation. duction to sparse s: Basic structure Function execut pression: Infix to	on. Linked List: Doubly Linked List, Circular Linked List – rse matrix (structure). Skip list Case study: Dictionary ure of a Stack, Implementation of a Stack using Arrays & cution, Nested functions, Recursion: Tower of Hanoi. to postfix, Infix to prefix, Evaluation of an Expression,					
	Unit 2: Queues and Trees Queues & Dequeue: Basic Structure implementation using Arrays and Li scheduling- Implementation using Search Trees (BST) and Forest: defin tree. Traversal of trees: Preorder, In	14 Hours are of a Simple Queue, Circular Queue, Priority Queue, Dequeue and its Linked List. Applications of Queue: Case Study – Josephus problem, CPU og queue (simple /circular). General: N-ary trees, Binary Trees, Binary finition, properties, conversion of an N-ary tree and a Forest to a binary Inorder and Postorder. 14 Hours						
	Unit 3: Application of Trees and Int Implementation of BST using an Implementation of binary expression Implementation using arrays. Imp Applications of Trees and Heaps: meanings). Balanced Trees: definiti Representation of graphs: Adjacen matrix and lists. Graph traversal me Graph representation: Representati	and Introduction to Graphs ising arrays and dynamic allocation: Insertion and deletion op expression tree., Threaded binary search tree and its implementatio ays. Implementation of Priority Queue using heap - min and m Heaps: Implementation of a dictionary / decision tree (Words v definition, AVL Trees, Rotation, Splay Tree, Graphs: Introduction, Pi Adjacency matrix, Adjacency list. Implementation of graphs using a ersal methods: Depth first search, Breadth first search techniques. Ac						

	Unit 4: Applications of Graphs, B-Trees, Suffix Tree and Hashing Application of BFS and DFS: Connectivity of graph, finding path in a network. Suffix Trees: Definition, Introduction of Trie Trees, Suffix trees. Implementations of TRIE trees, insert, delete and search operations. Hashing: Simple mapping / Hashing: hash function, hash table, Collision Handling: Separate Chaining & Open Addressing, Double Hashing, and Rehashing. Applications: URLs decoding, Word prediction using TRIE trees / Suffix Trees. 14 Hours
Laboratory	 Linked List and advanced operations. Stack and applications based on it. Queue and applications based on it. BinaryTree, BinarySearch Tree and applications based on it. Graph Data structure and applications based on it. Hashing Techniques.
TextBook(s):	1:"DataStructures using C/C++",Langsum Yedidyah, MosheJ Augenstein, Aaron MTenenbaum Pearson Education Inc, 2nd edition,2015.
Reference Book(s):	1:"Data Structures and Program Design in C",Robert Kruse, Bruce Leung, C.L Tondo, Shashi Mogalla, Pearson, 2nd Edition, 2019
Course Outcome	 Select and apply appropriate data structures for solving problems in a variety of application domains. Implement fundamental data structures and their operations using suitable programming constructs and techniques. Utilize data structures effectively in competitive programming to design optimal and efficient solutions. Design and develop efficient software systems by leveraging an in-depth understanding of data structure principles and their applications.

Course Code	UE24MA241A	Course Title	Mathe	matics for Co	omputer Sci	ence Eng	ineers
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	С
		Credit Assigned	4	0	0	4	4
Semester	3	Type of Course	Core				
Al Tools /Tools/Languag es	Jupyter Notebook, Python, Pandas, Matplotlib, Scipy, Seaborn, BeautifulSoup, Numpy, Scikit learn. R (R Studio) and Python, Orange	Desirable Knowledge	-				
Prelude	This course covers both Descriptive seeks to infer something about a por regression model. This course will constrained, and discrete optimization	e statistics to unde opulation on the k also cover engin ion techniques.	nderstand the data and the inferential statistics which the basis of a statistical sample and build a simple linear gineering optimization techniques like unconstrained,				
Course Objectives:	 Provide insights about the basic roles of a Data Scientist. Develop a greater understanding of the importance of summary statistics and Random Variables and their Distributions. Provide students with knowledge of Confidence Intervals and their importance. Make inferences about the population parameters using sample data and test it to draw meaningful conclusions. Provide an understanding on the importance and techniques of predicting a relationship between the two sets of data and determine the goodness of fit model. Provide an understanding on the importance and techniques of engineering optimization. 						
Course Contents	Unit 1: Descriptive Statistics and Sa Sampling and Descriptive Statistics: Types of Statistics, Types of Data, T Sampling Methods, Sampling Errors, Probability and commonly used Dist Normal Probability Plots, Introduc Acceptance- Rejection method, Sam Self-Learning: Generation of Randor Applications: 1. Poisson distribution, calculation of 2. Variance, standard deviation, ider 3. Central limit theorem, Load Balan 4. Sampling mean, Estimating datab Unit 2: Point Estimation, Confidence Commonly used Distributions: Princ Poisson, Normal, Maximum Likeliho Introduction to multivariate normal Confidence Intervals: Interval Estim Interval Estimates for Proportion of between Two Means, Interval Estim	Introduction, Mot Introduction, Mot ypes of Experime , Case Study. ributions: Chebysl ction to Generati opling Distribution m Variates -Inverse of number of calls ntifying the custor icing in distributed ase query response e Intervals and He iples of Point Estir od Estimate for B distribution, MAR nates for Mean of f Large and Smal nates for Paired Da	ons ivating Exa nts –Contr nev's inequ ion of Ra i, The Cent se Transfor received i mer satisfa d systems se times. ypothesis nation - M ernoulli, B P distributi Large and Il Samples ata. Factor	amples and S rolled and O uality, Linear ndom Varia rral Limit The rm Method. n a specified action in onli and internet Testing lean Squared inomial, Poi on. d Small Sam , Confidence s affecting N	Scope. Statis bservational function of tes and me eorem and A l time duration ine shopping t traffic pred d Error for Be sson, Norma ples, Studer e Intervals f Aargin of Err	tics: Intro I study, S random v ention th opplicatio on in call g. iction ernoulli, f and Cas nt's t Dist or the D or,	oduction, ampling: variables, ne types, ns. centers. 14 Hours Binomial, se Study. tribution, ifference

	 Hypothesis Testing: Introduction, Large-Sample tests for a Population Mean, Drawing conclusions from the results of Hypothesis tests, Tests for population proportion, Small-Sample tests for a Population Mean, Case Study. Self-Learning: Confidence interval for difference between two proportions. Applications: t-distribution, confidence interval, students' performance analysis based on hours of study. z-test, application form processing in banking system. Hypothesis testing, randomly trained students' placement into tier-I and tier-II companies. 14 Hours
	 Unit 3: Hypothesis Testing and Multiple Linear Regression Hypothesis Testing: Distribution Free Tests, Chi-squared Test, Fixed Level Testing, TypeI and TypeII Errors, Power of a Test, Factors Affecting Power of a Test. Correlation and Simple Linear Regression: Introduction, Correlation, the Least Square Lines, Predictions using regression models - Uncertainties in Regression Coefficients, Checking Assumptions and transforming data. Multiple regression: Introduction to the Multiple Regression Model, Case Study. Self-Learning: F test for equality of Variance. Applications: Linear regression, stock market prediction Using Chi-Square Test, Analyzing the association between vaccination and recovery of the patients considering COVID data. Chi-Square Test and Test of Independence, Analyzing the relationship between gender and preference for a product purchase.
	4. Identifying Type1 and Type2 Errors in Spam mail classification.
	14 Hours Unit 4: Engineering optimization Introduction to optimization, Types of optimization, Mathematical concepts of objective function, constraints and decisions, Constrained Linear Optimization- LPP – Formulation, Graphical Method, The Simplex Method, Discrete variable optimization - Integer Programming Problem, Branch and Bound Method, Constrained Non-linear Optimization-Lagrangian Multipliers method, Kuhn Tucker Conditions, Unconstrained non-linear optimization -Gradient Descent Method, Evolutionary computation -Genetic Algorithms. Self-Learning: Newton Rapson Method.
	 Applications: Minimize a Loss functions in Neural Networks using Batch gradient descent (Unconstrained Optimization) Lagrange Multipliers to find local maxima and minima of a function subject to equations constrains (Constrained Optimization) Case study on Bayesian Optimization with Discrete Variables (Discrete Variable optimization) Use Genetic Algorithms to optimize Production Scheduling in a manufacturing environment, focusing on minimizing total production costs while meeting job deadlines and machine constraints. Evaluate the GA's effectiveness against traditional scheduling methods.
TextBook(s):	 "Statistics for Engineers and Scientists", William Navidi, McGraw Hill Education, India, 4th Edition, 2015. "Engineering Optimization Theory and Practice", Singiresu S. Rao, John Wiley & Sons, Inc, 4th Edition,2009.

Reference Book(s):	 "Fundamentals of Data Science", Sanjeev J.Wagh, Manisha S. Bhende, and Anuradha D. Thakare, First edition, CRC Press, 2022. "Sampling-Design and Analysis", Sharon L.Lohr, 2nd edition (stats), Cengage,2010. "Data Science from Scratch", Joel Grus, O' Reilly, 1st Edition,2015. "A Hands-On Introduction to Data Science", Chirag Shah, Cambridge University Press, First edition, 2020.
Course Outcome	 Use Python and other tools to extract, clean and analyze data from several data sources(files, web) analyze an extremely large dataset and perform exploratory data analysis to extract meaningful insights. Analyze a real-world problem and solve the same with the knowledge gained from various distribution studies. Develop and test a hypothesis about the population parameters to draw meaningful conclusions and fit a regression model to data and use it for prediction. Analyze a real-world problem and solve the same with the knowledge gained from various distribution studies.

Course Code	UE24CS241A	Course Title	Web Te	echnologies				
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	с	
		Credit Assigned	4	0	0	4	4	
Semester	3	Type of Course	Core	-	-			
Al Tools /Tools/Languag es	HTML, CSS, JavaScript, MERN Technologies GitHub Copilot and Tabnine	Desirable Knowledge	-					
Prelude	Web Technologies course demonst designing and developing a rich web	trates an in-dept application in ar	oth understanding of the technologies necessary for an efficient way.					
Course Objectives:	 Basic web technologies and Advanced JavaScript. The core concepts of HTMI NodeJS) stack and build an Building a multi-tier applica Integrate database Mongo 	 Basic web technologies and building blocks of a website using HTML, CSS, JavaScript and Advanced JavaScript. The core concepts of HTML5, JQuery and AJAX, MERN (MongoDB, ExpressJS, ReactJS and NodeJS) stack and build an UI of the application using React JS. Building a multi-tier application by interfacing UI to NodeJS. Integrate database MongoDB through ExpressJS Framework and Web services. 						
Course Contents	Unit 1: HTML, CSS and Client-Side S Introduction to Web Architecture ar ups & syntax, HTML elements & attr CSS3.0 - Styles and Style sheets, Sele Built-in Objects), JavaScript objects,	cripting Ind Web protocols ributes, Web Forr ectors, Style prop DOM Manipulati	(HTTP Rec n, HTML5 erties, Box ons, Event	quest Respon (New Tags, II (Model, Java and Event	se Formats, nputs, Elemo IScript Basic Handling in	URLs), Ba ents and (s (variable JavaScript	sic Mark- Controls), es, scope, t 14 Hours	
	Unit 2: HTML5 and ReactJS HTML5 (APIs), Audio, Video and Progress, Geolocation, Callbacks & Promises, Single Page Application, XML Vs JSON, , Async/Await, ReactJS - MERN Introduction, JSX, rendering of Elements, Set-up React Installation, React Component and JSX, React Component Styling, Properties, States and Context – (Arrays), How state works in functional component.							
	14 Hours Unit 3: ReactJS and NodeJS State Management – Complex components, Keys,Event Handling, React Forms, React Hook – useState, useRefs and UseEffect, React Hook – useContext and useReducer, React Router, Introduction to NextJS, Understanding Node JS Architecture, callbacks, Node Modules, Buffers and Streams, File system, Axios							
							14 Hours	
	MongoDB-Documents, Collections, react application on NodeJS, React Express Framework Overview, Rout and File Upload.	ons, Reading and Writing to MongoDB, MongoDB NodeJS Driver, run React Router. ExpressJS – Introduction to Web services and REST Routing and URL building, Error Handling, Express Middleware, Forn						
							14 Hours	

TextBook(s):	 "Learning PHP, MySQL & JavaScript", Robin Nixon.,5th edition, O'Reilly Media, Inc.ISBN: 9781491978917, 2018. "Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node", Vasan Subramanian, Apress, 2017.
Reference Book(s):	 "Beginning Node.js, Express & MongoDB Development", GregLim, July 2019. "Learning React, Functional Web Development with React and Redux", Alex Banks and Eve Porcello, O'Reilly Media, May 2017.
Course Outcome	 Understand basic web technologies like HTML, CSS and JavaScript. Achieve rich user experience by implementing HTML5 features and Asynchronous communication using MERN stack layers (MongoDB, ExpressJS, ReactJS and NodeJS) and Create rich User Interface using React JS Understand and Integrate the UI with NodeJS. Create RESTful Web services using ExpressJS and MongoDB database.

Course Code	UE24CS242A	Course Title	Automata Formal Languages & Logic					
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	С	
		Credit Assigned	4	0	0	4	4	
Semester	3	Type of Course	Core					
AITools /Tools/Languag es	PLY,JFLAPAI Tool- https://www.opentrain.ai/glossa r y/automata-theory https://www.yeschat.ai/gpts- 9t55kXLEUfB-Automata-Expert	Desirable Knowledge	-					
Prelude	The course introduces fundamental concepts in Automata and Formal Languages and their application to Logic. The course covers the notions of Finite State Automaton, Regular expression, Push down Automaton, Context Free Languages and Turing Machines. These abstract and formal models and their usage in Propositional and First Order Predicate Logic, allow for solving problems in Formal language Generation and Recognition.							
Course Objectives:	 Teach students to construct basic machines like DFA, NFA which represent Regular Languages, Regular Expressions, and Regular Grammars and to identify Non – Regular Languages. To familiarize students to construct Context Free Languages, to construct Push down Automata which represent Context Free Languages, to conver the given grammar to various normal forms and to make use of Membership Algorithm. Teach students to understand closure properties of Context Free Languages, to identify Non – Context Free Languages and to construct Turing Machines and To familiarize students with concepts like Recursively Enumerable languages, Recursive Languages, Undecidable Problems. And to familiarize notions of mathematical logic: logical notations (syntax) and how to assign meaning to them (semantics) 							
Course Contents	Unit 1: Introduction Mathematical Preliminaries and Notation, Three Basic Concepts. Finite Automata: Deterministic Finite Accepters,Non-DeterministicFiniteAccepters,EquivalenceofDeterministicandNon-DeterministicFinite Accepters, Reduction of the number of states in Finite Automata. Regular Expressions, Connection between Regular Expressions and Regular Languages, Usage of Regex in practical programming/Regex in practice, Regular Grammars. 14 Hours Unit 2: Regular Languages and Context Free Languages Properties of Regular Languages: Closure Properties of Regular Languages, Elementary Questions about Regular Languages, Identifying Non-Regular Languages. Definitions of PDA and CFL, Deterministic							
	Pushdown Automata, Non-Deterministic Pushdown Automata, Pushdown Automata and Context Free Languages, Context Free Grammars. 14 Hours Unit 3: Properties of Context Free Languages and Turing Machine Parsing and Ambiguity: Parse tree, ambiguous grammars, removing ambiguity, inherently ambiguous grammars. Simplification of Context–Free Grammars and Normal Forms: Methods for Transforming Grammars, Two Important Normal Forms, A Membership algorithm for Context Free Grammar. Properties of Context-Free Languages: Closure Properties and Questions about Context–Free Languages, Pumping Lemma for Context–Free Languages. Turing Machines: The Standard Turing Machine, Constructing Turing Machines, Combining Turing Machines for Complicated Tasks, Turing's Thesis. 14Hours							

	Unit4: Undecidability and design of a declarative language. Hierarchy of Formal Languages and Automata: Recursive and Recursively Enumerable Languages, the Chomsky Hierarchy. Limits of Algorithmic Computation: Some Problems that cannot be solved byTuring Machines, Undecidable Problem for Recursively Enumerable Languages, idea of reduction, Rice's theorem, its proof and its applications. A very simple Logic, Syntax, Semantics, A simple knowledge Base, A simple inference procedure. Propositional Theorem Proving: Inference and Proofs, Proof by Resolution, Conjunctive Normal Form, A resolution algorithm. Syntax and Semantics of First Order Logic: Models for First Order Logic Symbols and interretations.
	Lists. Example - The electronic circuits' domain 14 Hours
TextBook(s):	 "An Introduction to Formal Languages and Automata", PeterLinz, Jones and Bartlett, New Delhi, India, 6th Edition, 2016. "Artificial Intelligence – A Modern Approach", Stuart Russell and Peter Norvig, Pearson, 3rd Edition(Paperback), 2016.
Reference Book(s):	 "Theory of Computation", Michael Sipser, Cengage Learning, New Delhi, India, 2008. "Introduction to Automata Theory, Languages, and Computation", John E Hopcroft, Rajeev Motwani, Jeffrey DUllman, Pearson Education, New Delhi, India, 3rd Edition, 2009. "Theory of Computation: A Problem–Solving Approach", Kavi Mahesh, Wiley India, NewDelhi, 2012.
Course Outcome	 Design simple machines like DFA, NFA, convert NFA to DFA and minimize a given DFA, construct regular expressions for different languages, verify that some languages are regular and some are not. Analyze the difference between Regular Languages and ContextFree Languages, design Push Down automata, construct Context Free Grammars, and convert one form of the grammar to another form. Enumerate the properties of ContextFree Grammars, verify that some languages are context free and some are not, design Turing Machines, and analyze the difference between acceptability and decidability. Analyze the difference between Recursive and Recursively Enumerable Languages, Decidable Languages, Turing —Recognizable and Co-Turing —Recognizable, some problems that cannot be solved by Turing Machines, reduce one Undecidable Problem to another, Undecidable Problems for Recursively Enumerable Languages. And make use of Propositional Logic and Predicate Logic in knowledge representation and truth verification.

Course Code	UE24CS251B	Course Title	Microprocessor & Computer Architecture					
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	С	
		Credit Assigned	4	0	2	5	5	
Semester	4	Type of Course	Core					
Al Tools /Tools/Languag es	ARM Simulator, Arduino Microcontroller kit, Para Cache simulator. Compute intensive Application are run on GPU systems.	Desirable Knowledge	UE24CS Organiz	251A-Digita ation	l Design and	Compute	er	
Prelude	This course will give you an in-depth understanding of the inner-workings of modern digital computer systems and trade-offs present at the hardware-software interface. The course focuses on key topics in microprocessor such as the system architecture, low level programming aspects and interface with other key components. Also, the course will help in understanding the core computer architecture concepts such as multilevel in memory hierarchies, pipelining, and super scalar techniques. A desirable knowledge of Digital Design and Computer organization is required.							
Course Objectives:	 Introduce concepts of basic processor architecture and its design. Understanding the concept of pipeline architecture and hazards. Study of memory hierarchy, cache memory and its optimizations. Introduce advanced concepts in processor architecture like multi-core/manycore Processor architectures. 							
Course Contents	Unit1: Architecture and Assembly Introduction, ISA Classification - Instruction Set-Operations, Contro	Language Program - RISC and CISC, I Flow, Instruction	nming Memory Encoding,	Addressing, Case Study-	Operands - ARM/MIPS/>	Types a x86Proce	and Size, ssor. 16 Hours	
	Unit2: Pipelining 3-Stage Pipelining, 5-Stage Pipelining, Pipeline Datapath and Control, Data Hazards –Forwarding vs. Stalling, Control Hazards, Branch Prediction Mechanisms and Exceptions, Performance Metrics. 12 Hours Unit3: Basics of Cache and Cache Optimization Basics of Caches-Fully Associative, Direct Mapped and Set Associativity, Cache Performance, Basic Cache Optimization- Reduce in Miss Rate. Basic Cache Optimization- Reduce Miss Penalty, Reduce Hit Time. 14 Hours Unit4: Advances in Architecture Introduction to Parallel Computing, Parallel Computer, Memory Architecture and Flynn's Taxonomy, Parallel Computing Concepts and Terminology, Design Issues & Constraints, performance in parallel computing: Amdahl's Law & Gustafson's Law , Multicore Processors and OpenMP programming, Realization of ML operations on Modern Architecture, Introduction to Heterogenous Parallel Computing, Introduction to GPU Computing.							

Laboratory	 Introduction to ARM Simulator and sample programs. Implementation of Data Processing Instructions, Programs on usage of addressing modes. Programs on functions and software interrupts, Matrix Operations–Addition and Multiplication. Introduction to PARACACHE simulator–Direct Mapping, Associative Mapping. Introduction to Plugins interface. Project work.
TextBook(s):	 1:"Computer Organization and Design", Patterson, Hennessey, 5th Edition, Morgan Kaufmann, 2014. 2. "Computer Organization and Design –ARM Edition", Patterson, Hennessey, 4th Edition, Morgan Kaufmann, 2010. 3. "ARM System-on-Chip Architecture", Steve Furber, 2nd Edition, Pearson India, 2015. 4. "Programming Massively Parallel Processors A Hands-on Approach", Third Edition David B. Kirk Wen-mei W. Hwu, Morgan Kaufmann. 5. "Multicore and GPU Programming An Integrated Approach", Gerassimos Barlas, second edition, Morgan Kaufmann.
Reference Book(s):	1:"Computer Architecture: A Quantitative Approach", Hennessey, Patterson, 5 th Edition, Morgan Kaufmann, 2011. 2:"The Definitive Guide to the ARM Cortex-M0 and CortexMO + processors", JosephYiu, 2nd Edition, Newnes, 2015.
Course Outcome	 Demonstrate ability to understand the design of different instruction sets like RISC/CISC And their addressing modes. Demonstrate the ability to understand the design of a pipelined processor and its Challenges. Demonstrate the use of tools to analyses the performance of programs on different Architectures. Design alternative memory hierarchy layouts and optimizations. Demonstrate and appreciate modern trends in architecture such as multicore Architectures.

Course Code	UE24CS252B	Course Title	Com	nputer Netw	orks			
Program	B.Tech CSE(AI & ML)	Hours per week/ Credit Assigned						
			4	0	2	5	5	
Semester	4	Type of Course	Core					
Al Tools /Tools/Languag es	Wireshark, Python. Advanced-Computer Networking-Tutor Computer Network Professor (yeschat.ai)Al	Desirable Knowledge	-					
Prelude	This is a foundation course on Computer Networking which focuses on building blocks of the Internet. We trace the journey of messages sent over the Internet from an application residing on one host machine (source) to another (Destination) using a top-down layered approach. The course contents are organized based on TCP/IP Protocol stack.							
Course Objectives:	 To provide a comprehensive understanding of the fundamental principles and architectures of computer networks and the Internet. To enable students to design, implement, and analyze network applications using socket programming and understand the role of application layer protocols. To equip students with the knowledge to analyze and evaluate transport layer protocols, including their mechanisms for reliable data transfer and congestion control, and to introduce them to the concepts of Software Defined Networking (SDN). To familiarize students with link layer protocols, error detection/correction techniques, and routing algorithms, enabling them to understand the operational aspects of local area networks and network routing. 							
Course Contents	and network routing. Unit 1: Computer Networks and the Internet, Application Layer Introduction to Computer Networks, Internet: A Nuts-and-Bolts Description, A Services Description, Protocol,TheNetworkEdge:AccessNetworks,PhysicalMedia,Introductiontophysicallayerdevices,The Network Core, Packet Switching, Circuit Switching, A Network of Networks, Delay, Loss, and Throughput in Packet-Switched Networks, Overview of Delay in Packet Switched Networks, Delay, Loss, and Throughput in Packet-Switched Networks, Overview of Delay in Packet Switched Networks, Delay, Loss, and Throughput in Packet-Switched Networks, Overview of Delay in Packet Switched Networks, Delay, Loss, and Throughput in Packet-Switched Networks, Overview of Delay in Packet Switched Networks, Delay, Loss, and Throughput in Packet-Switched Networks, Overview of Delay in Packet Switched Networks, Delay, Loss, and Throughput in Packet-Switched Networks, Overview of Delay in Packet Switched Networks, Delay, Loss, and Throughput in Packet-Switched Networks, Overview of Delay in Packet Switched Networks, Delay, Loss, and Throughput in Packet-Switched Networks, The OSI Model, TCP/IP Protocol Suite, Protocol Layers, The OSI Model, TCP/IP Protocol Suite. Network Application Principles: Network Application Architectures, Processes Communication, Transport Services available to Applications, Transport Services provided by Internet. Unit 2: Application Layer, Transport Layer – UDP The Web, HTTP and HTTPS, Nonpersistent and persistent connection, HTTP Message Format, User Server Interaction: Cookies, Web Caching. DNS, The Internet's Directory Service: Services provided by DNS; How DNS works: DNS Records and messages; Peer to peer Applications; Socket Programming with TCP and UDP; Other Application Layer Protocols: FTP, SMMP, Telnet, SSH. Introduction to Transport Layer Services: Relationship Between Transport and Network Layer, Overview of the Transport Layer in the Internet, Multiplexing and Demultiplexing; Connectionlees Transport UDP: UDP Segment Structure, U							

	Addressing, NAT. 14 Hours
	Unit 4: Network Layer and Internet Protocol, Link Layer and LAN Introduction to Network layer Protocols: DHCP,ICMP; IPv6 Protocol: Packet Format, Transition from IPv4 to IPv6; Introduction to Routing Algorithms: Link State: Dijkstra's algorithm and Distance Vector: Bellman– Ford Algorithm. Link layer – Error–Detection and Correction techniques, Parity checks, Internet Checksum, Cyclic Redundancy Check,and Multiple Access Protocols: CSMA/CD,CSMA/CA;SwitchedLAN: Link layer addressing and ARP, Ethernet: Link–layer switches. Retrospective: A Day in the Life of a Web Page Request. Physical Layer – Purpose, Signals to Packets, Transmission media. Wireless LANs: IEEE 802.11 LAN architecture.
Laboratory	 Designing and Simulation of Network Topology using Cisco Packet Tracer. This experiment introduces students to Cisco Packet Tracer, enabling them to create basic network topologies, configure devices, and visualize data flow within a network. Understanding Persistent and Non-persistent HTTP Connections. Students use Wireshark to analyze HTTP traffic and understand the differences between persistent and non-persistent connections, focusing on real-world scenarios like web page loading. Exploring UDP with DNS and Sockets using Wireshark. This week is divided into two parts: analyzing DNS queries and responses to understand UDP traffic and implementing UDP socket communication for practical understanding. Congestion Window Plotting using NS2. Students simulate TCP congestion control using NS2 and plot the congestion window, learning how TCP adapts to network conditions. Understanding Hardware Components in Networking. Students explore physical networking components, such as routers, switches, and cables, gaining hands-on experience with hardware setup and troubleshooting.
TextBook(s):	1:"Computer Networking: A Top –Down Approach", James F. Kurose, Keith W. Ross, 7 th Edition, Pearson Publication, 2017.
Reference Book(s):	1. "TCP IP Protocol Suite", Behrouz Forouzan, 4 th Edition, McGraw–Hill, 2010.
Course Outcome	 Analyze and apply fundamental networking concepts, including protocol layers, network architectures, and addressing schemes (IPv4, IPv6). Evaluate and implement key application layer protocols (HTTP,DNS,SMTP) and understand their role in network communication. Apply socket programming concepts with TCP and UDP to develop network applications. Design and analyze transport layer protocols(UDP,TCP), including reliable data transfer, flow control, and congestion control mechanisms, and evaluate their impact on network performance. Additionally, gain an introductory understanding of Software Defined Networking(SDN) concepts. Explain and apply link layer protocols(Ethernet, Wi-Fi), error detection/correction techniques, and routing algorithms (Dijkstra, Bellman-Ford) for efficient network operation.

Course Code	UE24CS241B	Course Title	Design and Analysis of Algorithm				
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	С
		Credit Assigned	4	0	0	4	4
Semester	4	Type of Course	Core				
Al Tools /Tools/Languag es	C-Programming language Visu Algo (Interactive Visualizations), Algorithm Visualizer (Al Explanations)	Desirable Knowledge	UE25CS151B-problem solving with C, UE24CS252B-Data Structures and its Applications				
Prelude	Algorithms play a key role in science and practice of computing. Learning algorithm design technique isa valuable endeavor from practical standpoint and algorithm design techniques have considerable utility as general problem-solving strategies, applicable to problems beyond computing. This course includes classic problems of computer science, application of design techniques and analysis in terms of time and space.						
Course Objectives:	 Learn various algorithm design techniques and apply appropriate algorithmic design techniques for specific problems. Learn to design and analyze algorithms with an emphasis on resource utilization interm softime and space. Learn to trade space for time in algorithmic design using input enhancement and per- structuring. Learn the limitations of algorithmic power and techniques to handle these limitations. 						
Course Contents	Jnit 1: Introduction and Brute Force Algorithms: Fundamentals of Algorithmic Problem Solving, Important Problem Types. Analysis of Algorithm Efficiency: Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Non-Recursive and Recursive Algorithms. Brute Force: Selection Sort, Bubble Sort, Sequential Search, Brute Force String Matching, Exhaustive Search. 14 Hours Jnit 2: Decrease-and-Conquer & Divide-and-Conquer Decrease-and-Conquer: Decrease by constant number algorithms - Insertion Sort, Topological Sorting, Algorithms for Generating Combinatorial Objects, Decrease-by-a-Constant-Factor Algorithms – Fake Coin Problem, Russian Peasant Multiplication, Josephus problem, Decrease-by-Variable-Size Algorithms – Computing a median and the selection problem. Divide-and-Conquer: Master Theorem, Merge Sort, Quick Sort, Binary Search, Binary Tree Traversals, Complexity analysis for finding the height of BST, Multiplication of Large Integers, Strassen's Matrix Multiplication. 14 Hours Unit 3: Transform-and-Conquer Space and Time Tradeoffs & Greedy Technique Transform and Conquer: Pre-sorting, Heap Sort, Red-Black Tree Construction and Time complexity Analysis						
	for insert and search operation, 2-3 analysis. Space and Time Tradeoffs: and Boyer-Moore Algorithms. Greed	Trees and B Tree Sorting by Count dy Technique: Pri	e: insertion ing, Input m's Algorit	, deletion, s Enhancemer thm, Kruskal	earching, an nt in String N I's	id time co Aatching-	omplexity -Horspool

	Algorithm and union-find algorithm, Dijkstra's Algorithm, Huffman Trees
	14 Hours
	Unit 4: Limitations, Coping with the Limitations of Algorithm Power & Dynamic Programming Dynamic Programming: Computing a Binomial Coefficient, The Knapsack Problem and Memory Functions, Warshall's and Floyd's Algorithms. Limitations of Algorithm Power: Lower-Bound Arguments, Decision Trees, P, NP, and NP Complete, NP-Hard Problems. Coping with the Limitations of Algorithm Power: Backtracking. 14 Hours
TextBook(s):	 "Introduction to the Design and Analysis of Algorithms", Anany Levitin, Pearson Education, Delhi (Indian Version), 3rd Edition, 2012.
Reference Book(s):	 "Introduction to Algorithms", Thomas H Cormen, Charles ELeiserson, Ronald L Rivest and Clifford Stein, Prentice Hall India, 3rd Edition, 2009. "Fundamentals of Computer Algorithms", Horowitz, Sahni, Rajasekaran, Universities Press, 2nd Edition, 2007. "Algorithm Design", Jon Kleinberg, Eva Tardos, Pearson Education, 1st Edition, 2006.
Course Outcome	 Identify the design technique used in an algorithm. Design and implement efficient algorithms for practical and unseen problems and analyze these algorithms using quantitative evaluation. Understand Time and Space Tradeoff's. Understand, and cope up with the limitations of algorithm power.

Course Code	UE24CS242B	Course Title	Operating System					
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	с	
		Week/ Credit Assigned	4	0	0	4	4	
Semester	4	Type of Course	Core					
Al Tools /Tools/Languag es	C, Linux/Unix OS for system call implementation.	Desirable Knowledge	UE24CS2	52A-Data St	ructures and	l its Appli	ications	
Prelude	This course focuses on fundamental offs for efficient management of res the student to have a desirable know	is course focuses on fundamental operating systems concepts including various algorithms and trade- s for efficient management of resources such as CPU, Memory, Storage and I/O. This course requires e student to have a desirable knowledge of Data Structures and its Applications.						
Course Objectives:	 Focus on fundamental Ope Provide an understanding of Delve deeper into vario management such as proce Introduce design principles 	ntal Operating System concepts. anding of various components of the Operating System (OS). o various algorithms and associated trade-offs for efficient resource as process, disk, and memory management. rinciples and trade-offs in the design of Operating Systems.						
Course Contents	Unit 1: Introduction and Process M What Operating Systems Do, Operat System Services, Operating System shell programming – variables, con on Processes, System calls for proc request. CPU Scheduling: Basic Con Scheduling Policies. Shell programm	anagement ting-System Struc Design and Imp trol flow Process ess management ncepts, Schedulin hing –cron	ture & Ope lementatic es: proces -fork (), vf g Criteria,	erations, Kerr on. Shell pro s concept, P ork (), wait (Scheduling	nel Data Stru ogramming: rocess Sche () and exec (Algorithms.	ictures, C Overviev duling, O (), Life cy Case Stu)perating- v of bash perations cle of I/O Idy: Linux 14 Hours	
	 Unit 2: IPC, Threads and Concurrency IPC – Introduction, Shared Memory systems, Message Passing, Communication in Client–Server Systems- Pipes, ordinary pipes and named pipes, system calls for shared memory, pipes and fifo's. Threads: Overview, Multicore Programming, Multithreading Models, Thread Libraries, Thread Scheduling. Process Synchronization: Background, The Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of Synchronization- The bounded-Buffer Problem, The Readers–Writers Problem, The Dining-Philosophers Problem, Synchronization Examples- Synchronization in Linux. System calls for threads creation and synchronization-POSIX Threads. Deadlocks: System Model, Deadlock Characterization, Deadlock avoidance, Banker's Algorithm, Deadlock 							
	Unit 3: Memory Management Main Memory: Background- Basic Dynamic Loading, Dynamic Linking Segmentation, Paging, Structure of	14 Hours Unit 3: Memory Management Main Memory: Background- Basic Hardware, Address Binding, Logical Versus Physical Address Space, Dynamic Loading, Dynamic Linking and Shared Libraries, Swapping, Contiguous Memory Allocation,						
	on-Write, Page Replacement Algorithms-FIFO, LRU, Optimal, Allocation of Frames, Thrashing. 14 H Unit 4: File and Storage Management						14 Hours	
	File-System Interface: File Concept, system calls for file operations-open(), read(),write(), lseek(), close and system call to retrieve file attributes and file types-stat(), lstat(), Access Methods, Directory and Dis Structure, system calls for reading directories, system calls to create hard links (link()) and symbolic link							

	symlink().File-System Implementation: File-System Structure, File-System Implementation, Directory Implementation, Allocation Methods, File Sharing, Protection. Storage management: Overview of Mass- Storage Structure, Disk Scheduling, Swap-Space Management, RAID Structure. System Protection: Goals, Principles and Domain of Protection, Access Matrix, Implementation of the Access Matrix, Access Control. Shell programming - awk, sed 14 Hours
TextBook(s):	 "Operating System Concepts", Abraham Silberschatz, Peter Baer Galvin, Greg Gagne 10th Edition, John Wiley & Sons, Global Edition, 2023.
	 "Advanced Programming in the Unix Environment", Richard Stevens and Stephen A Rago, Pearson, 3rd edition, 2017.
Reference Book(s):	1: "Operating Systems, Internals and Design Principles", William Stallings, 9th Edition, Pearson, 2018.
	2: "Modern Operating Systems", Andrew S Tanenbaum, 3rd edition, Pearson, 2007.
	3: "Learning the bash shell", Cameron Newham, 3 rd edition, O'Reilly, 2005.
Course Outcome	 Understand the principles and modules of Operating Systems. Understand the design of various algorithms for scheduling and their relative performance. Understand the concept of Deadlocks that typically occur in OS. Deadlocks - Avoidance and Detection. Implement Operating Systems Concepts related to process management, Concurrent processes, Threads and Memory Management.

Course Code	UE24MA241B	Course Title	Linear Algebra and its Applications					
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	s	С	
		Credit Assigned	4	0	0	4	4	
Semester	4	Type of Course	Core		-			
Al Tools /Tools/Languag es	Python IDE, MathGPT, Deepseek	Desirable Knowledge	-					
Prelude	This is a basic subject on matrix theory and linear algebra. Emphasis is given to topics that will be useful in Engineering discipline, including system of equations, vector spaces, eigenvalues, similarity, and positive definite matrices. The course provides hands-on experience in basic programming concepts using PYTHON/MATLAB for solving problems relevant to these areas.							
Course Objectives:	 To teach students how to use linear algebra as a powerful tool for computation. To show how these computations can be conceptualized in a geometric framework. To give a gentle introduction to the theory of abstract vector spaces. To visualize solution to linear system of equations with different approaches using Python/Matlab. 							
Course Contents	 To visualize solution to finear system of equations with unterent approaches using Python/Matlab. Unit 1: Matrices, Gaussian Elimination Introduction, The Geometry of Linear Equations, Gaussian Elimination, Singular Cases, Elimination Matrices, Triangular Factors -LU decomposition and Row Exchanges, Inverses and Transposes, Inverse by Gauss -Jordan method, Symmetric Matrices. Self-Learning Component: Algebra of Matrices. Application Unit 1: Basic operations with matrices in Matlab/Python. Matrix operations and image manipulation Matrix multiplication, inversion, and photo filters Solving linear systems. Unit 2: Vector Spaces & Linear Transformations Vector Spaces and Subspaces (definitions only), Linear Independence, Basis and Dimensions, Row reduced Echelon form, The Four Fundamental Subspaces, Rank-Nullity theorem. Linear Transformations, Algebra of Linear transformations, Self-Learning Component: Examples of Vector Spaces and Subspaces. Application Unit 2: Systems of linear equations and college football team ranking (with an example of the Big 12) Convolution, inner product, and image processing revisited Norms, angles, and your movie choices Interpolation, extrapolation, and climate change. 14 Hours Unit 3: Orthogonalization, Eigenvalues and Eigen vectors Transform Orthogonal Vectors and Subspaces, Orthogonal Bases, Cosines and Projections onto Lines, Projections and Least Squares. Orthogonalization, The Gram-Schmidt Orthogonalization process, Introduction to Eigenvalues and Eigenvectors, Properties of Eigenvalues and Eigenvectors, Cayley-Hamilton 							
	of the plane, and the Chaos Game Pr algorithm.	rojections, eigenv	ectors Ma	trix eigenval	ues and the	Google's	PageRank	

	Unit 4: Singular Value Decomposition Quadratic Forms, Definitions of Positive definite, negative definite, positive semi-definite, negative semi- definite, indefinite forms and matrices, Tests for Positive Definiteness, Cholesky's method, Singular Values and Singular Vectros, Image Processing by Linear Algebra, Principal Component Analysis (PCA by the SVD
	and Covariance matrix), Minimum Principles. Application Unit 4: Principal Component Analysis, and face recognition algorithms Social networks, clustering, and eigenvalue problems Singular Value Decomposition and image compression. 14 Hours Hands on learning using PYTHON and Applications to Computer Science Engineers.
TextBook(s):	 Linear Algebra and its Applications, Gilbert Strang, Thomson Brooks/ Cole, 5th Edition, Second Indian Reprint 2007.
	2. Application : Applied projects for an introductory linear algebra class by Anna Zemlyanova.
Reference Book(s):	 Linear Algebra and its Applications, David. C lay, Publication by Pearson Education, 5th Edition, 2015 Linear Algebra, Schaum's outlines, Seymour Lipschutz and Marc Lipson, Tata McGraw- Hill publications, 4th Edition, 2009. Higher Engineering Mathematics, B S Grewal, Khanna Publishers, 44th Edition, 2020,. Practical Linear Algebra, Gerald Farin and Dianne Hansford, CRC Press, Taylor & Francis Group, 3rd Edition.
Course Outcome	 Solve systems of Linear Equations using Matrix Transformations, Interpret the nature of Solutions, Visualize Consistency of Linear system of Equations and also compute inverse of a Matrix. Demonstrate the ability to work within Vector Spaces, distil Vector Space properties and understand the concepts of the four fundamental Subspaces, Linear Span, Linear Independence, Dimension and Basis. Learn the concepts of Orthogonal Vectors and Orthogonal Subspaces and apply the Gram-Schmidt process to find an Orthonormal Basis in a Subspace, Eigenvalues, Eigenvectors and Diagonalization of a Matrix. Apply the concept of Positive Definite Matrices, Singular Value Decomposition into application problems.

Course Code	UE23CS351A	Course Title	Database Management System				
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	с
		CreditAssigned	4	0	2	5	5
Semester	5	Type of Course	Core				
Al Tools /Tools/Languag es	MySQL Workbench, Python, ERwin, Any other tool for ER modeling, RelaX - relational algebra calculator.Bytebase SQL Editor, Chat2DB	Desirable Knowledge	-				
Prelude	This course offers a solid theoretical foundation in Database Management System (DBMS) and explores the practical applications of DBMS in a real-world scenario. The course emphasizes on the creation and the design of relational database systems. It also introduces the databases that provides flexible schemas and scale easily with large amounts of data and high user loads.						
Course Objectives:	 Understand fundamental concepts, terminology, and application of relational databases and Construct ER diagrams for a desired application and transform the same into a relational schema. Understand database design concepts and design relational databases and construct basic and advanced SQL queries. Understand, and apply Normal Forms in database design, Transactions, Concurrency control, Locking, and Recovery, implement them in a real-time setup, and transform the given Normal Form into the desired form. Understand the concepts of Database Security, and NoSQL databases such as MongoDB, Neo4j, and DynamoDB. 						
Course Contents	Unit 1: Introduction to Database M Introduction to databases, Database reducing ER to a relational schema. Enhanced ER Model Subclasses, S Constraints and Characteristics. Re Unity, Binary, Aggregate Functions, Unit 2: Database Design: Basic and SQL overview, Data definition, Strue Values, Aggregate Functions, Nester Functions, and Procedures, Event s CTEs, Window functions, Full-Text Query optimization. Unit 3: Advanced Design Concepts Functional Dependencies, Inference Primary Keys (1NF,2NF,and3NF), Ge Normal Form, Properties of Relation Unit 4: Advanced Databases Database transactions, Concurrence Injection), Data protection at rest ar database (MongoDB),Key-Value da model Databases.	Jnit 1: Introduction to Database Management ntroduction to databases, Database application architecture, Users and Administrators, E-R Model, reducing ER to a relational schema. Structure of relational databases,Database schema, constraints,Keys, Enhanced ER Model Subclasses, Super classes, Inheritance, Specialization and Generalization and its Constraints and Characteristics. Relational Model: Relational operations (Algebra), Unary Operations - Jnity, Binary, Aggregate Functions, Grouping. 14 Hours Jnit 2: Database Design: Basic and Advanced SQL SQL overview, Data definition, Structure of SQL queries, Additional Basic Operations, Set Operations, Null values, Aggregate Functions, Nested Subqueries, Database Modification, Join expressions, Views, Triggers, Functions, and Procedures, Event scheduler - Automated tasks, Replication – Master-slave, Multi-source, CTEs, Window functions, Full-Text Search Functions, Introduction to strategies of Query processing and Query optimization. 14 Hours Unit 3: Advanced Design Concepts and Implementation Functional Dependencies, Inference Rules, Closure, Equivalence, Minimal Cover Normal Forms Based on Primary Keys (1NF,2NF,and3NF), General Definitions of Second and Third Normal Forms Boyce-Codd Normal Form, Properties of Relational Decompositions, Overview of Higher Normal Forms. 14 Hours Unit 4: Advanced Databases Database transactions, Concurrency control, Locking, Recovery, Database Security, Security Threats (SQL Injection), Data protection at rest and in transit, Introduction to NoSQL databases, CAP theorem, Document database (MongoDB),Key-Value database (DynamoDB), Graph databases (Neo4j), Introduction to Multi-				Aodel, ,Keys, nd its ions - Hours s, Null ggers, ource, og and Hours d on Hours s (SQL ument Multi- Hours	

Laboratory	 Draw an ER diagram for a given problem statement, Conversion of an ER diagram into a Relational schema.
	2. Execution of Relational algebraic expressions using Relaxtool.
	3. DDL–create constraints, alter, rename, drop, truncate table, Views.
	4. DML–Insert, Update, Delete, Transactions-commit, rollback, savepoint.
	5. SQL-Setoperators: union, intersect, minus. SQL–Aggregate functions.
	6. SQL–Joins:inner,outer;Subqueries:correlated and uncorrelated.
	7. SQL–Full-Text Search Functions.
	8. SQL-Event Scheduler-Automated tasks, Replication-master-slave, multi-source, CTEs, Window
	functions.
	9. SQL–Creating Functions and Procedures.
	10. SQL–Creating Triggers and Cursors.
	11. XML-Database access.
	12. NoSQL database queries.
	13. High-level programming language accessing a database using an API.
TextBook(s):	1. "Fundamentals of Database Systems", Ramez Elamsri, Shamkant B Navathe, Pearson, 7th
	Edition, 2017.
	2. "Database System Concepts", Silberschatz, HKorth and S Sudarshan, McGrawhill, / "Edition,
	2019.
Reference	1. Database Management Systems, R Ramakrishnan, JGehrke, 3 rd Edition,McGrawHill,2002.
Book(s):	2. Data on the Web: From Relations to Semistructured Data and XML, S Abiteboul, P Buneman, D
	Suciu, Morgan Kauffman, 1999.
Course	At the end of this course, the student will be able to:
Outcome	• Demonstrate an ability to explain the basic concepts of database management, construct and
	transform ER diagrams into Relational Schema.
	• Design databases and construct simple and advanced SQL queries for given contexts.
	• Explain Normal Forms, employ them in Database Design, and apply database security concepts
	in application contexts.
	• Demonstrate the ability to use semi-structured and NoSQL databases.

Course Code	UE23CS352A	Course Title	Machine Learning				
Program	B.Tech CSE(AI & ML)	Hours per week/	L	т	Р	S	с
		Credit Assigned	4	0	2	5	5
Semester	5	Type of Course	Core				
Al Tools /Tools/Languag es	Pytorch, SkLearn, Keras, Tensor flow Google cloud VertexAI(end- to-end ML platform), Amazon Sagemaker, IBM Watson studio, Auto ML tools (H2O.ai (H2O AutoML), Google AutoML, Hugging Face, Haystack etc	Desirable Knowledge	Mathematics for Computer Science Engineers Linear Algebra & its Applications, Design and Analysis of Algorithms.				
Prelude	Machine Learning surrounds us today: in phones that respond to voice commands, programs that beat humans at Chess and Go, robots that assist surgeries, vehicles that drive in urban traffic, and systems that recommend products to customers on e-commerce platforms. This course aims to familiarize students with the breadth of modern ML, to impart an understanding of the dramatic surge of ML in the last decade, and to foster an appreciation for the distinctive role that ML can play in shaping the future of our society. This course requires the student to have a desirable knowledge of Statistics for Data Science, Linear Algebra and its Applications and Design and Analysis of Algorithms.						
Course Objectives:	 Formulate a well-defined Machine Learning problem with clear metrics. Understand the notions of Hypotheses Space, Hypotheses Structure and Search. Become conversant with types of Machine Learning Algorithms, their applicability, and Inductive Bias. Familiarize with techniques for Ensemble Learning and deep learning. 						
Course Contents:	Unit 1: Foundations of Machine Learning and Supervised learning Models Introduction to Machine Learning- Machine Learning Models-Supervised, Unsupervised, Semi-supervised, Reinforcement Learning. Concept Learning, Hypotheses and Hypothesis Space, Version space, Inductive bias. Decision Tree Learning- Decision Trees, ID3 and dealing with continuous values for classification in DTs, Decision boundary for decision trees(x-y axis), Bias Variance decomposition. Issues in Decision Tree Learning – Overfitting, Solutions to overfitting. Other Core Supervised Learning Approaches- Instance- based learning: k nearest neighbor learning (Classification & Regression), Decision boundary for KNN. 14 Hours						
	Unit 2: Neural Networks, Ensemble Learning, and Kernel-Based Methods for Classification Artificial Neural Networks- Introduction, Perceptrons, Multi-layer Networks and Backpropagation, Activation Functions (Step, Sigmoid, Tanh, ReLU), Various Optimizers (Gradient Descent, Stochastic Gradient Descent, Momentum-based, Adagrad, Adam), Ensemble Models- Combining Weak Learners, Improving Performance with Gradient Boost. Support Vector Machines – Margin and Maximization, SVM – The Primal Problem, The Lagrangian Dual, SVM – Solution to the Lagrangian Dual (Hard Margin).						

	Unit 3: Stochastic Models and Unsupervised learning
	Bayesian Learning- Bayes' Theorem, Maximum Likelihood Estimation (MLE), Bayes Optimal Classifier, Unsupervised Learning-Hierarchical vs. Non-Hierarchical Clustering, Agglomerative and Divisive Clustering, Bisecting K-Means, and Expectation Maximization (EM), K-Means as a Special Case of EM, Gaussian Mixture Models (GMMs), Hidden Markov Models (only Forward Algorithm derivation. Backward, Viterbi and Baum Welsch Algorithms applications only).
	Unit 4: Introduction to Deep Learning Architectures from CNNs to Transformers Convolution Neural Networks-Introduction to Convolution Operation, Convolutional Neural Network (CNN) Architecture, Parameter Calculation in CNNs, Max Pooling, Average Pooling, Recurrent Neural Networks Introduction to Recurrent Neural Networks (RNN), Vanishing and Exploding Gradient Problems, Variants of RNN – LSTM and GRU (mention of gates), Advanced Deep Learning Architectures- Basic GAN and Its Architecture, Basic Architecture of Transformers (Encoder-Decoder Perspective with Basics of Attention Mechanism).
	14 Hours
Laboratory	 Introduction to SciKit, Performance Metrics Decision Trees. ANN Random Forest Concept & Implementation SVM (Kernel Functions/soft margin SVM-Concept & implementation) Naïve Bayes (concept and Implementation) HMM K means Clustering (Concept and Implementation) CNN model.
TextBook(s):	1. "Introduction to Machine Learning", Ethem Alpaydin, Third edition, MIT Press Ltd, 2015
	 "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", Peter Flach, Cambridge University Press (2012). Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville (MIT Press, 1st Ed., 2016)
Reference Book(s):	 "Machine Learning", Tom Mitchell, McGraw Hill Education(India),2013. Pattern Recognition and Machine Learning by Christopher M.Bishop (Springer,1stEd.,2006). Machine Learning: A Probabilistic Perspective by Kevin P. Murphy (MIT Press, 1st Ed., 2012).
Course Outcome	 Distinguish categories of Data Attributes, Dimensions, and Sample Sizes. Acquire a thorough understanding of Supervised, Unsupervised Learning, Apply Ensemble Methods and deep learning methods for solving the problems. Design and implement a solution to real world machine learning problem.

Course Code	UE23CS341A	Course Title	Software Engineering					
Program	B.Tech CSE(AI & ML)	Hours per I week/	L	т	Р	s	с	
		Credit Assigned	4 0 0 4 4					
Semester	5	Type of Course	Core					
Al Tools /Tools/Languag es	Git, GitHub, docker, Jenkins, gtest, pytest, Jira/OpenProject, SonarQube.	Desirable Knowledge	-					
Prelude	In this course, students learn an techniques, and tools. Topics in th design, programming style, testing software project management. The a software development project is emphasis is placed on performing al a hands-on experience in using state	nd gain practical nis course include g, quality manage practical experier s carried through II SDLC activities s e-of-the-art techr	experience e requirence ement, sec nce centers all the st imilar to in niques and	ce with softworth softworth analysis curity validation on a semester ages of the softworth strugger.	vare enginee s, specificatio on, devOps, er-long team p oftware life Assignments	ering prin n, archite teamworl project, in cycle. Par further p	ciples, cture, k, and which ticular rovide	
Course Objectives:	 Learn Software Engineering approach to software d management and Lifecycle Expose students to agile de specifications. Enable the students to und importance of software qu Enable students to underst products through a semest 	g concepts. Ensur levelopment. Ex s. evelopment metho lerstand the princ ality for Software and the continuo er long project.	e the relev pose stud odology us iples of So Product D us develog	vance and nee lents to the ing standard t ftware Config levelopment. oment, build,	d of an engin software p cools and asso uration Mana test and relea	eering project ciated ngement a se of soft	ind ware	

Computer Science and Engineering (Artificial Intelligence and Machine Learning)

Course Contents	Unit 1: Introduction to Software Engineering and Requirements Engineering Introduction, Case studies and motivation for SE, DevOps and CI/CD tools introduction and setup, Software development lifecycles overview (waterfall etc) and motivation for agile methodology. Agile approach of software development, Contrasting Agile and Plan driven approaches, Agile SCRUM model and exposure to other Agile approaches like Lean Agile, XP etc. Hands on Jira training. Security development lifecycle. Requirements Engineering: Requirement's introduction and properties, Feasibility, Requirements Elicitation, Analysis and modelling, Specification and Verification, Requirement Management and Requirements Traceability; Introduction to UML and development of use cases. Validation planning and security validation plan. 16 Hours
	Unit 2: Software Project Management and Software Architecture and Design and Quality Fundamentals, Software Project Management Lifecycle, Planning activities, Choice of Lifecycles, Project Organization, Software Estimation, Scheduling, Risk Management, Quality Management, Gantt charts basics, Monitoring of Execution and Control, Project Closure. RACI matrix with example Software Architecture: Case study for motivation of SW Arch, Architectural View, Styles, Architectural and Design Patterns. Modularity, interface definition, microservices intro, Security architecture, Agile context. Software Design: Modularity, importance of interfaces (API and ABI), Error definition, handling and management, Forward and backward compatibility, usage of UML. Quality and Test case development: Case studies and motivation, types of testing, technical debt, Test cases documentation, Black and white box testing. 12 Hours

٦

	Unit 3: AI, Implementation, SCM, DevOps
	AI for SW Engineering and SE for AI/ML systems. CI/CD pipeline and tools for development, Introduction to software construction, Coding principles, standards and guidelines, Factors for effective coding - Defensive, Secure and Testable programming, Code Review / Peer Review, Security code reviews; logging, tracing, debugging techniques. Test case development and dynamic analysis, functional and nonfunctional testing, security testing, Automation; mutation testing to validate test suite Software Configuration Management (SCM): Elements of a Configuration Management System, Configuration Items, Baselines, Repositories, Branch Management, Build Management, Install, Change and Release Management, Patching and Patch Management.
	16 Hours
	Unit 4: Usability, Quality and System Testing ICase study discussion, Industry talk, Usability, UX design, Code coverage, branch coverage; Ethics and Software Engineering; Opensource Introduction; SW maintenance and support; Security and Privacy aspects; Measurements and Matrix for Quality; Risk management for Quality Security Validation – Penetration Testing, Fuzzing; System testing – Regression testing, Integration testing Demo and student presentations for the mini-project. 12 Hours
TextBook(s):	1. "Software Engineering", International Computer Science Series, Ian Somerville, Pearson
	Education, 10th Edition, 2021. 2. "Software Engineering: A Practitioner's Approach", Roger S Pressman, McGraw Hill, 9th Edition, 2019.
Reference Book(s):	 "Effective DevOps: Building a Culture of Collaboration, Affinity, and Tooling" by Jennifer Davis, Ryn Daniels, O' Reilly Publications, 2018. "Software Engineering: Principles and Practice", Hans van Vliet, Wiley India, 3rd Edition, 2010. "Foundations of Software Testing ", Aditya Mathur, Pearson, 2008. "Software Testing, A Craftsman's Approach ", Paul C. Jorgensen, Auerbach, 2008. 6:IEEE SWEBOK, PMBOK, BABOK and Other Sources from Internet. "Software Testing – Principles and Practices", Srinivasan Desikan and Gopalaswamy Ramesh, Pearson, 2006.
Course Outcome	 Relate to the challenges of Software Development and Software Engineering as a methodical approach for development. Use state-of-the-art tools and techniques for large-scale software systems development. Use Software project management ideas and apply suitable architecture and design approaches for software development. Implement the major software development methods in practical projects including CI/CD, various devOps tools etc. Follow industry accepted documentation and review processes to develop a high quality SW project.

Program	B.Tech CSE(AI & ML)	Hours per			Advanced Foundation of Machine Learning				
			L	Т	Р	S	С		
		Credit	4	0	0	4	4		
Semester	5	Assigned Type of	Flective -	<u> </u>					
Semester	5	Course	LICCLIVE	•					
Al Tools /Tools/Langua ges	Pytorch, SkLearn, Keras, Tensorflow Google cloud Vertex AI (end to-end ML platform).	Desirable Knowledge	Mathematics for Computer Science Engineers, Linear Algebra and its Applications. Also, students should be undertaking Machine Learning in parallel.						
Prelude	This course is a companion elective for the core Machine Learning course. This course equips the students, aspiring for a future career in Machine Learning, with additional mathematical foundation and topics that the core Machine Learning course may not cover. The course primarily focuses on topics related to Deep Learning, preparing the students for advanced machine learning elective courses in future semesters.								
Course Objectives:	 Learn vector and matrix calculus to understand the mechanics of deep learning using concepts such as Gradient, Jacobian, Hessian, and convex functions. Learn mathematical foundations of Optimization and Regularization techniques in machine learning, with a specific focus on Deep Learning Learn the mathematical treatment of Linear Regression and Logistic Regression, Generative Deep Learning, and additional dimensionality reduction methods. Learn Imbalanced Learning and Semi-supervised learning. 								
Course Contents:	Unit 1: Vector and Matrix Differentiation for Deep Learning Introduction - Vector, Matrix, Tensor in Machine Learning. Geometric intuition for machine learning- mod error, feature similarity, independence of vectors, and multidimensional hyperplane. Gradient – vector partial derivatives of a scalar-valued function of multiple variables. Jacobian - gradient of a vector-value function. Chain rule on a multivariate function. Hessian Matrix and Discriminant. Application of Jacobian Machine Learning – Gradient Descent and Back propagation algorithm. Multi-dimensional Taylor seri and Hessian– why the gradient provides the best direction for descent. Convexity of functions –global ar local minima. Application of Hessian in Machine Learning- convexity in multi-dimensional function. A fe useful matrix differentiation identities in machine learning.					g- model vector of r-valued cobian in or series obal and n. A few			
	14 Hours Unit 2: Optimization and Regularization Categories of optimization algorithms – differentiable and non-differentiable target function, Convex and non-convex function, Local vs. Global minima. Optimization of model hyperparameters: Random and Grid Search, Stochastic Hill climbing, and Bayesian optimization. Local Optimization over differentiable target functions - Stochastic, Batch, and Minibatch Gradient Descent. Convergence - Momentum, Nesterov Accelerated Gradient (NAG), AdaGrad, RMSProp, Adam. Normalization – Data, Batch, and Layer normalization. Loss functions and differentiability of loss functions- softmax, cross-entropy, and binary cross-entropy. Learning to learn (meta learning), i.e., Optimization- based approach – Model Agnostic Meta Learning. Metric-based approach – Prototypical Network. Global Optimization over non-differentiable target function – Genetic Algorithm. Regularization - Occam's Razor and Minimum Description Length, No Free Lunch Theorem. Regularization via objective function–Norm- based penalty, Lasso penalty, Ridge penalty, Elastic net. Regularization in neural networks– Weight decay, Learning curves, Parameter sharing, Residual connection, Model averaging or dropout. 14 Hours								

	 Unit 3: Regression, Generative Deep Learning, and Dimensionality Reduction Regression: Linear Regression - Linear Algebra, MLE, and Gradient Descent interpretation. Logistic Regression- Stochastic Gradient Descent& MLE interpretation. Generative Adversarial Network – Loss Function, GAN training, CycleGAN. AutoEncoder – deep autoencoder, sparse autoencoder, denoising autoencoder, variational autoencoder. Dimensionality Reduction: Linear methods – Linear Discriminant Analysis(LDA), Independent Component Analysis (ICA).Non-linear methods: Kernel PCA, Multi-dimensional Scaling (MDS), t-SNE, Isometric Mapping (ISOMAP). Neural Methods – Self-Organizing Map (SOM).
	Unit 4: Unsupervised Learning, Learning with Scarcely Labeled Data Unsupervised Learning – Density based clustering (DBSCAN), Spectral Clustering Imbalanced Learning: Data Sampling – over-sampling and under-sampling, SMOTE. Cost-sensitive learning. One-class classifiers. Data Augmentation and synthetic data generation. Ensemble learning for Imbalanced Data.
	Semi-supervised Learning: SSL assumptions. Self-training and Co-training algorithms. Deep Semi-supervised Learning with Ladder Network. Graph-based classical semi-supervised learning algorithms– Label Propagation and Label Spreading Algorithm. 14 Hours
Text Book(s):	 Deep Learning Foundations and Concepts, Christopher M. Bishop with Hugh Bishop, Springer, 2023. MATHEMATICS for MACHINE LEARNING, MarcPeter Deisenroth, A.Aldo Faisal, Cheng SoonOng, Cambridge University Press(2020).
Reference Book(s):	 Dive into Deep Learning, Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, Cambridge Univ Press, 2023. Deep Learning, Ian Good fellow, Yoshua Bengio, and Aaron Courville, MIT Press, 2016. Matrix Differentiation, Randal JBarness, Springs Journal(page1-6),2006,UniversityofMinnesota. The matrix Calculus you need for need for Deep Learning, arXiv, Terence Parr, Jeremy Howard.
Course Outcome	 Deal with matrix calculus concepts necessary for advanced deep learning courses . Deal with optimization and regularization techniques in ML. Deal with Generative Deep Learning and additional dimensional reduction methods. Deal with scarcely labeled datasets using suitable techniques.

Course Code	UE23AM342AA2	Course Title	Active Le	earning			
Program	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С
Program		week/					
		Credit	4	0	0	4	4
	-	Assigned					_
Semester	5	Type of Course	Elective - I				
AI Tools	Pytorch, SkLearn, Keras, Tensorflow	Desirable	Mathema	tics for Cor	nputer S	Science	
/Tools/Languages	Google cloud Vertex AI (end to-end	Knowledge	Engineers	, Linear Alg	ebra an	d its	
	ML platform).		Applicatio	ons. Also, st	udents :	should be	:
Duoludo	Creating good datasets requires human	c in the lean and is	undertaking Machine Learning in parallel.				
Preiude	Dataset creation is often an important	s in the loop and is	s often neglected, leading to suboptimal results. The and industry, where an application-specific and evaluation data for their machine learning s. Active Learning comes to the rescue when we				
	model is developed. Data scientists ne	ed better training a					
	models, as a good model with poor data	a vields poor results					
	have a very small amount of labeled da	ta for a learning tag	sk, and this s	situation is	often ei	ncountere	ed. This
	course does a deep dive into active le	arning methods to	deal with h	now to crea	ate bett	er datase	ts with
	humans in the loop.						
Course	 Should develop a deep under 	rstanding of the in	nportance o	of well-ann	otated of	data in m	nachine
Objectives:	learning and active learning.						
	Should be able to use different	t sampling algorithr	thms in Active Learning.				
	 Should be able to use Active Le Should be able to greate an an 	earning methods to	tor aifferent machine learning tasks.				
Course	Init 1: Introduction to Active Learning	and Uncertainty	y apprying active learning methous.				
Contents:	Introduction: Importance and challenge	es of quality human	an annotation. Introduction to Active Learning				
contents	when to use. The three main active le	arning strategies -	5 - uncertainty, diversity, and random sampling				
	Human-computer interface in creating	i-computer interface in creating training data. Uncertainty Sampling: Interpreting uncertainty in a					
	nachine learning model, Uncertainty sampling algorithms, identifying when models are confused,						
	Measuring uncertainty across predictio	s, Selecting the right number of samples.					
			14 Hours				
	Unit 2: Diversity Sampling and Advand	anced Active Learning					
	Diversity sampling – model-based out	outlier sampling, cluster-based sampling, representative sampling,					
	sampling for real-world diversity. Ad	real-world diversity. Advanced Active Learning - combining uncertainty sampling and					
	diversity sampling. Active Transfer Learning- applying active transfer learning to uncertainty sampling,						
	representative sampling, and adaptive sampling.						
						14	I Hours
	Unit 3. Applying Active Learning to M	achine Learning Ta	sks				
	Applying active learning to machine le	earning tasks-Apply	ving Uncerta	ainty samp	ling, Div	versity sa	mpling,
	Active Transfer Learning, and Represe	entative sampling	to Object d	letection, s	Semanti	, c segmer	ntation,
	Sequence labeling, and Language gener	ation tasks.	-			-	
						14	1 Hours
	Unit 4. Data Annatation						
	Working with people - in-house expert	s crowd sourced	and outsour	red Estima	ating an	notation	volume
	required. Quality control for annotati	on – comparing a	nnotation w	vith ground	d truth.	inter-ani	notator
	agreement, and aggregating multiple	annotations. Mac	hine Learnir	ng for ann	otation	quality o	control.
	Annotation quality for different machin	e learning tasks.				•	
						14	1 Hours

Text Book(s):	 Human in the loop machine learning", Robert Monarch, Manning Books, 2021. Active Machine Learning with Python: refine and elevate data quality over quantity with active learning", Margaux Masson-Forsythe (Author), Packt, 2024.
Course Outcome	 Should develop a deep understanding of the importance of well-annotated data in machine learning and active learning. Should be able to use different sampling algorithms in Active Learning. Should be able to use Active Learning methods for different machine learning tasks. Should be able to create an annotated dataset by applying active learning methods.

Course Code	UE23AM342AA3	Course Title	Social	Computir	ng			
Dragmana	B.Tech CSE(AI & ML)	Hours per	L	Т	P	S	С	
Program		week/	4	0	0	4	4	
		Credit		-				
	-	Assigned	EL 11					
Semester	5 Dethers to also and librarian for another	Type of Course	Elective	-	C	C - i - u - u -		
	Python tools and libraries for graph	Desirable	Findingo	natics for (Lomputer :	Science		
/ TOOIS/ Languages	with Puthon text processing and	Kilowiedge	Annlicat	ions Also	Algebia al	should he	2	
	Machine Learning libraries such as		underta	king Macl	hine Learni	ing in nar	: allel	
	NLTK. Spacy. PyTorch. etc.		underta		Learning Learning			
Prelude	As society has largely moved online,	people's footprints	on social	media ha	ve becom	e the wir	dows to	
	people's minds. This interdisciplinary	course explores ho	w compu	itational r	models and	d techniq	ues help	
	understand social interactions. The fir	st part of the cours	se focuses	on text r	mining for	social me	dia data	
	and social graphs that often help expla	iin how a social ever	nt builds u	p. The sec	cond part o	of the cou	rse dives	
	deep into contemporary social comp	uting, i.e., social NI	P-based	investigat	ions dealir	ng with La	anguage,	
	Users, and Social media events of inte	rest today.						
Course	Learn text mining techniques		L					
Objectives:	Learn fundamental principles	of social graph ana	lytics.		in an airt m	adia data		
	 Learn social NLP use cases ba Learn how to analyze events 	sed on language an of interest in today'	a user into	ormation	in social m	edia data	sets.	
Course	Unit 1: Text Mining - Linguistic Pre-n	rocessing and Analy	s online s	+				
Contents:	Linguistic Pre-processing of Text – Tex	t Tokenization. Tex	t normaliz	zation. Un	derstandir	ng text sv	ntax and	
	structure -Part Of Speech Tagger. Chu	unker. and Parser. T	ext classi	fication –	Text Norn	nalization	Feature	
	Extraction with Bag Of Words (TF IDF)	, Using dense embe	dding mo	dels -Wor	d2Vec, BEI	RT, etc. Ev	aluating	
	the classification model. Text summa	arization and Inform	nation Ext	raction -	key phrase	e extracti	on, topic	
	modeling – Latent Semantic Indexing,	Latent Dirichlet All	location, A	Automatic	documen	t summai	rization -	
	TextRank. Text Similarity and Clusterin	ng- Term and Docun	nent Simil	arity, K-m	eans Clust	ering, and	ៅ Affinity	
	Propagation. Semantic and Sentiment	Analysis of Text- Na	med entit	ty recogni	tion, opini	on, and se	entiment	
	mining. Suggested Case Study – Minir	ng Product Reviews	collected	from Soci	al Media.			
							14.110	
	Unit 2: Social Graph from Social Med	ia Data					14 Hours	
	Social Graphs – Degree and degree dig	stribution Paths st	rong and	weak ties	signed ne	tworks (`entrality	
	- degree centrality, closeness centr	ality. betweenness	centralit	v. Eigenv	ector. Kat	z. and P	ageRank	
	centrality. Components in the graph:	clique, N-clique, N	I-clan, N-c	club, N-co	ore, connec	cted com	ponents.	
	Clustering- Global and Local clusterin	g coefficient. Com	nunity De	etection -	Clique Per	rcolation	method,	
	modularity optimization methods. Pr	operties of the rea	l-world n	etwork. G	Generative	models-	Random	
	Graph Models, Preferential Attachme	nt model, Watts ar	nd Strogat	z Small w	orld mode	el. Sugges	ted case	
	study-Building a social graph from a c	orpus of tweets and	l analysis (of the sam	ne.			
	Unit 2. Dro cocial behavior Anti-	al habavier, and Ca				:	14 Hours	
	Language Civility - Politonoss, Hoto Spo	ai periavior, and SO		tion lice	r - Cradibili	ty llear ~	nodeling	
	Social Roles Anti-social computing-Tr	olling Flaming and	Dark con	tent Pola	rization a	nd Menta	l Hoalth	
	Social Media Events -Predicting Voting	Intentions. Crisis Ir	nd Dark content. Polarization and Mental Health. Informatics and Disaster Response, Rumor, Fake					
	News and Propaganda.	,						
						1	.4 Hours	
	Unit 4: Large Language Models in Soc	cial NLP, Challenges	- Bias, Et	thics, and	Privacy			
	Prompt Engineering Patterns for Text-	Elaborator, Correct	or, Expan	der, Para	phraser, Cl	assifier, E	xtractor,	
	Fact Checker, Summarizer, Generator,	Completer, Balance	er, Disamb	oiguator, F	Reformatte	er, Contex	t Binder.	
	Large Language Model Social Computi	ng – Generation of a	a Dataset	and its eff	fectiveness	s. Learnin	g models	
	using LLM using OPENAI –Classificat	ion, Information E	xtraction,	and Clus	tering. Ch	allenges	of social	
	computing – Ethics and Privacy. Bias a	nd Fairness Issues in	n Social Co	omputing.				
	14 H						14 Hours	

Text Book(s):	 Deep Learning Foundations and Concepts, Christopher M. Bishop with Hugh Bishop, Springer, 2023. MATHEMATICS for MACHINE LEARNING, Marc Peter Deisenroth, A.Aldo Faisal, ChengSoon Ong, Cambridge University Press (2020).
Reference Book(s):	 Dive into Deep Learning, Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, Cambridge Univ Press, 2023. Deep Learning, Ian Good fellow, Yoshua Bengio, and Aaron Courville, MIT Press, 2016. Matrix Differentiation, Randal JBarness, Springs Journal (page1-6), 2006, University of Minnesota.
Course Outcome	 Deal with matrix calculus concepts necessary for advanced deep learning courses . Deal with optimization and regularization techniques in ML. Deal with Generative Deep Learning and additional dimensional reduction methods. Deal with scarcely labeled datasets using suitable techniques.

Course Code	UE23AM342AA4	Course Title	Al for S	mart Mar	nufacturin	g			
Drogram	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С		
Program		week/							
		Credit	4	0	0	4	4		
		Assigned							
Semester	5	Type of	Elective -	I					
		Course							
	Oracle ERP, Salestorce CRM, SCM	Desirable	-						
/ Tools/Languages	This course explores the integration of	f Al in smart manu	facturing cy	istoms fr	ocusing on	hoth En	torprice		
Fieldue	Business Systems (FBS) and Supply (Chain Managemen	t (SCM) St	rudents v	vill gain a		hensive		
	understanding of the role of AI in stre	amlining manufact	uring proce	esses, opt	imizing su	i compre ipply cha	ins. and		
	enhancing enterprise resource planning	ng. The course inclu	udes theore	tical insig	ghts, pract	ical appli	ications		
	and case studies and mini project to	understand the f	unctionalitie	es, imple	mentation	method	lologies,		
	challenges, and strategic implications c	of AI technologies in	i modern m	anufactu	ring enterp	orises.			
Course	 Understand the fundamenta 	als of Enterprise	Business	Systems	(EBS) an	d Supply	y Chain		
Objectives:	Management (SCM).								
	Learn the strategic importance	e of ERP and SCM s	ystems in th	ne industr	у.				
	 Explore AI techniques applied 	to solve real-world	SCM challe	nges.					
Co	Identify critical success factor	s and associated ris	KS OF ERP a	na scivi ir	nplementa	ations.			
Contonts	Introduction to ERD: Introduction Va	ource Planning Sys	iems Jork Broble	ome with	Diciptogr	atod Dat	a in an		
contents.	Organization Evolution of ERP System	s Role of FRP Syste	ame in an C)rganizati	on Three.	tior Arch	a III all		
	for ERP Systems Stages Theory and It	s Application to Fy	olution of I	FRP Scon	on, mee	systems	Genera		
	Model of Business and Role of FRP. N	Maior FRP Players.	RP Players Implementations in India Lifecycle of an ERP						
	Implementation Project, Teams. Benefi	ts and Cost of an ER	P System: C	Cost-Bene	fit Analysi	s, ERP Tre	ends like		
	Analytics, AI, Cloud, and Technology	Integration. Case S	tudies: Al i	in ERP In	nplementa	tion at S	liemens		
	Explore how Siemens used AI to strea	mline their ERP im	plementati	on, enha	ncing data	integrat	ion and		
	decision-making processes. Predictive	Analytics in ERP at	Schneider I	Electric: A	Analyze Sc	hneider E	Electric's		
	use of predictive analytics within their E	use of predictive analytics within their ERP system to forecast demand and optimize production schedules.							
		14 Hours							
	Unit 2: Change Management, Re-Engi	neering, and BPIVI				مما مما مم			
	Change Management: Introduction, Cr	ange managemen	t for ERP pr	oject tea	m, team a	ind roles,	, change		
	management activities during lifecycle of a project, six key processes of ASAP. Re-Engineering:								
	Processes and Characteristics, Lifecycle of BPR and II-driven BPR Projects. Business Process Modeling								
	Management at General Electric: Assess how General Electric utilized AI tools to manage change during								
	their FRP re-engineering project, focusing on employee adaptation and process improvements. Rusiness								
	Process Re-Engineering with AI at Procter & Gamble: Evaluate Procter & Gamble's use of AI to re-engineer								
	business processes, resulting in increased efficiency and reduced operational costs.								
						1	.4 Hours		
	Unit 3: Procurement and Supply Chair	n Planning							
	Procurement and Inventory Manage	ment through ERI	P, Understa	anding th	ne Supply	chain. I	Demand		
	forecasting in a supply chain. Aggregate	e planning in a supp	ly chains. M	lanaging	oredictable	e variabili	ity. Case		
	Studies: AI-Driven Supplier Selection a	at IBM: Study IBM'	s implemen	itation of	AI for op	timizing	supplier		
	selection and performance evaluation,	Improving procure	ment efficie	ency.	loorning -	andala +-	nradia		
	customer demand reducing investors	costs and improvin		inachine	iearning n	nouels to	predict		
	customer demand, reducing inventory costs and improving supply chain responsiveness.								
	Linit 4. Planning and Managing Invent	ory and Logistics N	lanagemen	t in SCM		1.	TIOUIS		
	Production planning and execution – u	nderstanding MRP I	l concents	how FR n	roduction	planning	module		
	supports MPP II processes, critical ma	aster data element	s for produ	uction nla	nning, ma	anaging r	lifferen		
	production scenarios. Supply chain planning and its modules, collaborative planning solutions. Logistics								

	Execution: warehouse and transport management – logistics execution and transport management. Case Studies: AI-Enhanced Warehouse Management at Walmart: Investigate Walmart's application of AI for optimizing warehouse operations, leading to improved inventory accuracy and reduced picking times. AI-Driven Logistics Optimization at DHL: Explore DHL's use of AI for route planning and last-mile delivery,
	enhancing logistics efficiency and customer satisfaction.
	14 Hours
Text Book(s):	 "Enterprise Resource Planning: A Managerial Perspective" by Veena Bansal, Pearson Education India, 2013.
	2. "Enterprise Resource Planning- Text& Cases" by Rajesh Ray, Tata McGraw Hill, 2011.
	3. "Supply Chain Management: Strategy, Planning, and Operation" by Sunil Chopra, Pearson, 7th Edition, 2024.
Reference	1. "ERP Demystified" by Alexis Leon, McGraw Hill Education, 4thEd,2019.
Book(s):	2. "Modern ERP: Select, Implement, and Use Today's Advanced Business Systems" by Marianne
	Bradford, Pearson, 4th Edition, 2020.
	 "Enhancing Enterprise Intelligence: Leveraging ERP, CRM, SCM, PLM, BPM, and BI" by Vivek Kale, Auerbach Publications, 2016.
	4. "Essentials of SCM" by Michael H. Hugos, John Wiley & Sons, 3 rd Edition, 2018.
	 "Principles of Supply Chain Management: A Balanced Approach" by JoelD. Wisner, Cengage, 5th Ed, 2019.
	 "Strategic Supply Chain Management: The Five Core Disciplines for Top Performances" by Shoshanah Cohen & Joseph Roussel, Mc-Graw Hill, 2nd Ed, 2013.
	7. "Logistics and Supply Chain Management" by Martin Christopher, Pearson, 2022.
	8. "Supply Chain Logistics Management" by Donald Bowersox, etal., Mc-Graw Hill Publishing, 5th Edition, 2024.
	9. "Supply Chain Management: A Logistic Approach" by John J. Coyle, Cengage, 10th Ed, 2019.
Course	 Identify typical functionalities of ERP and SCM sub-systems.
Outcome	 Apply AI and ML techniques to optimize inventory, improve logistics, and predict trends.
	• Evaluate and select strategies for planning and managing inventories and logistics.
	Develop systematic plans for ERP and SCM implementation projects.

Course Code	UE23AM342AA5	Course Title	AI in Medical Imaging				
Program	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С
Tiogram		week/	4	0	0	4	4
	-	Credit Assigned					
Semester	5	Type of Course	Elective	-			
AI Tools	Python, Tensorflow/PyTorch,	Desirable	UE23MA	241A- Ma	thematics	for Compu	uter
/Tools/Languages	ImageJ, MATLAB.	Knowledge	Science I	Engineers,	UE23MA2	241B - Line	ar
			Algebra	and its App	olications.		
Prelude	This course explores the application of	Artificial Intelligence	(AI) in the	analysis ar	nd interpre	etation of r	nedical
	imaging data. It covers the fundament	als of medical imagin	ng techniq	ues, the p	rinciples c	of AI and m	hachine
	learning (IVIL), and the development of	of AI models for enr	iancing di	agnostic a	ccuracy, a	utomating	, image
	develop Al solutions that address chall	enges in medical ima	iculum am Iging	is to equip) students	with the	
Course	 Understand the basics of med 	ical imaging modaliti	ies (e.g., X	-rav. CT. ul	trasound.	MRI. PET)	
Objectives:	• Explore techniques to pre-pro	cess the medical ima	iges.	., ,	,	, ,	
	 Learn about AI and ML technic 	ques applicable to m	edical ima	ging analy:	sis.		
	Explore the process of develop	ping, training, and va	lidating Al	models fo	or medical	imaging.	
Course	Unit 1: Fundamentals of Medical Imag	ging		n Desies	of Divisit		
Contents:	Basics of Digital Image Processing, In	ntroduction to ivied	Ical Imagi	ng, Basics	d SPECT	VOXEL, IVIE	tadata,
	visualization roots, Data rypes, Medica	ai iillage Modalities -	Λ-ιάγ, Cι,	Ontrasoun	u, splet,	IVII\I, F L I .	
						14	4 Hours
	Unit 2: Processing of Medical Images						
	Bias Field Correction, Histogram Nor	malization, Denoisin	g, Maskin	g, Image	Interpolat	ion, Hand	ling 3D
	Images, Augmentation, Object Detection	ion and Localization,	Medical I	mage Seg	mentation	, Basics of	f Image
	Registration.					1	1.1
	Unit 3. Medical Image Classification a	nd Regression				14	+ Hours
	Data Harmonization. Classification	and Regression A	rchitecture	es. Deep	Represer	itation Le	arning.
	Transformer-based Deep Learning Seg	mentation, Medical I	Diagnosis	and Progn	osis, Deep	Learning	Models
	on Medical Images - CNN.						
	Unit 4. Dealer means of Almondale					14	Hours
	Unit 4: Deployment of Al models	idies of AL Applicatio	ns in Padi	ology Pati	hology an	d other de	mains
	Integration of Al Tools with clinical y	workflows. Handling	class imb	alance in	medical i	maging da	atasets.
	Deploying of AI models in research to c	clinical practice.	0.000				
		·				14	4 Hours
Text Book(s):	 "Medical Image Analysis", by eBook ISBN: 9780128136584. 	Alejandro Frangi, Je	rry Prince,	, Milan Soi	nka, ISBN:	97801281	.36577,
	2. "Deep Learning for Medical Im	age Analysis" by S. K	evin Zhou,	Hayit Gree	enspan, ar	nd Dinggan	g Shen.
	3. "Biomedical Image Analysis" b	oy Rangaraj M Ranga	yyan, 1st Edition, CRC Press.				
	4. "Medical Imaging Signals and :	Systems" by Jerry L	Prince, Jor	nathan M	Links, 2nd	Edition, F	earson
Course	Education, 2014	aging tochniques and	tho tupor	of data th	overador		
Outcome	 Describe different medical images Apply Al and ML algorithms to 	aging techniques and analyze and interpretered	i the types et medical	imaging d	ley produ(lata	.e.	
Guttome	 Evaluate the performance of A 	Al models in medical	imaging a	pplications			

Course Code	UE23CS342AA3	Course Title	Internet of Things					
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	s	С	
		Credit Assigned	4	0	0	4	4	
Semester	5	Type of Course	Elective -	I		-		
Al Tools /Tools/Languag es	Python, Embedded-C, Cloud Platforms, Single Board Computers	Desirable Knowledge	-					
Prelude	The Internet of Things is already changing the way people live and interact with humans and machines. Businesses in every vertical have already started to leverage the power of IoT platforms to increase their efficiency and performance. This course introduces the students to the three layer architecture of the IoT exploring all the major connectivity options and application layer protocols. It also encourages the students to develop interesting applications using different development boards, sensors and actuators. The course introduces the students to cloud platforms and analytics including security aspects of IoT Application development.						hines. e their he IoT es the lators. of IoT	
Course Objectives:	 Learn the fundamentals of Learn the concepts of sma Compare different applica Appreciate the role and im know the role of IoT in var 	the Internet of T rt objects & IoT a tion and network portance of Data ious verticals.	hings. rchitecture layer proto Analytics a	e. ocols for Inter and Security i	rnet of Things n real word p	s. roblems a	ind	
Course Contents	UNIT I: Introduction to IoT & Archi Introduction IoT Traffic Model, IoT Connectivity, IoT Use Cases & Applications, IoT P Factors Affecting an IoT Architectur Computing (Cloud, Fog & Edge). UNIT 2: IoT Sensors	tecture IoT Verticals, Us roject Implement al Model, IoT Arcl	e Cases & / ation, loT : hitectural N	Applications, Standards. Io Model, IoT WI	loT Value Cha T Architectur ⁻ Model, Data	ain. Examp re: Introdu Center & 14	oles of uction, Cloud, I Hours	
	Introduction, Sensors & Its Perform Self-Calibration, Sensors of the applications using the STM32 devel	ance Metrics, Se Future. Introdu opment board.	nsor Select ction to E	ion, Smart Se Embedded P	nsors, MEMS rogramming,	, Sensor F Designin	usion, g IoT	
	LINIT 3 · InT-Protocols InT Wired C	onnectivity				14	Hours	
	Introduction, Ethernet, Ethernet TS WiFi, LoRaWAN. Cellular IoT Techr Protocols for IoT: The Transport La Protocols, IoT Application Layer Pro	net TSN. Unlicensed-band Wireless Connectivity: Introduction, Zigbee, BLE, Technologies: Introduction, GSM-IoT, LTE, Practical Use Cases. Application Fort Layer-IoT Application Transport Methods, SCADA, Generic Web-Based er Protocols-CoAP and MQTT.						
	UNIT 4: IoT–Analytics, Security & P	Privacy				14	Hours	
	Introduction, Data Pipeline, AI, Mac Tree Example. IoT Cloud-Based Ser IoT Security - Introduction, IoT Th Regulations, IoT Privacy Concerns &	chine Learning, Su vices & Platforms nreats, IoT Vulne & Regulations, IoT	ipervised L s: Introduct rabilities, I Security &	earning Techi tion to thinge OT Threat M Privacy Exan	nique: Classifi er.io and Thin odeling & Ri nples, IoT & B	cation: De g Speak fo sk, IoT Se lockchain. 14 I	ecision or IoT. curity Hours	

TextBook(s):	 Dian, F. J, "Fundamentals of Internet of Things", Wiley Professional Development (P&T), 2022.David Hanes, Gonzalo Salgueiro, Patrick Grossetete,Robert Barton,Jerome Henry,"IoT. Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, Pearson Education (ISBN: 978-9386873743).
Reference Book(s):	 "Building Enterprise IoT Applications", Chandrasekar V uppalapati, CRCPress, Taylor & Francis Group, 2020. Arshdeep Bahga, Vijay Madisetti, "Internet of Things – A hands-on approach", Universities Press, 2015. Embedded Systems And Internet Of Things by Dr.Sonu Kumar, Dr.M.Venkatanarayana, ISBN:978-93-5747-591-4. "Embedded Software Development for the Internet Of Things: The Basics, the Technologies and Best Practices" by Klaus Elk.
Course Outcome	 Recognize the principles of smart objects and the potential for IoT and comprehend IoT architecture from sensors to the cloud, including edge gateways. Determine the static and dynamic performance metrics for core sensors and to understand the architecture of smart sensors for IoT system design. Learn how to use various wired and wireless technologies to provide connectivity for IoT applications and select a suitable application-layer protocol among the ones used for IoT applications. Recognize how analytics and artificial intelligence algorithms are used in the IoT ecosystem along with IoT security and privacy concerns.

UE23CS342AA4	Course Title	Applied Cryptography					
B.Tech CSE(AI & ML)	Hours per week/	L	т	Ρ	S	с	
	Credit Assigned	4	0	0	4	4	
5	Type of Course	Elective -	•				
SEED labs, Python Programming Language	Desirable Knowledge	-					
Cryptography is the science of secu fundamentals of cryptography, as practice. Students will have opport	ring data by using well as its appli unities to dwell w	mathema cations an ell into pro	itical concepts id issues of h oblem solving	s. This course now cryptogra and hands-or	will prese aphy is us n sessions	nt the sed in	
 To enable understanding foundations of Cryptography. To discuss about various symmetric encryption techniques. To understand the concept of public key cryptography. To introduce message authentication and hash function. Explore emerging cryptography and future Directions. 							
Unit 1: Classical Ciphers. Introduction to Cryptography, Cre Mathematical background for cryp toprobability,Conditionalprobability and Hillcipher, Transposition cipher ciphers. Shannon's theorem and Pe	yptanalysis and tography: Module y,Lawoftotalproba r -Railfence, Colur erfect secrecy, On	brute-forc o arithmet ability.Clas nnar and I e-time pac	e attack, Bas ic, GCD, Eucli sicalciphers:S Double colum l encryption a	sic cryptogra dean algorith ubstitution-C nar, Cryptana nd its limitati	ohic prim m, Introdu aesar, P lysis of cla ons.	itives. uction layfair assical	
Unit 2: Symmetric Key Cryptograph Introduction to symmetric key cryp cipher, Data Encryption Standard Mathematics- I: Galois fields, Pe functions, Key expansion, Analysis Drawback of symmetric key cryptog Unit 3: Public Key Cryptography an Introduction, Mathematics- II: Prin Diffie-Hellman key exchange, Ele Certificates, Cryptographic hash fu Algorithm (SHA), Message Digest al Unit 4: Hashing Techniques and ke Key-Distribution Centre (KDC), Kerb attack, Entity authentication method Introduction to Post-Quantum cryp PQC, PQC in Emerging Technologies	and Hillcipher, Transposition cipher -Railfence, Columnar and Double columnar, Cryptanalysis of classical ciphers. Shannon's theorem and Perfect secrecy, One-time pad encryption and its limitations. 14hours Unit 2: Symmetric Key Cryptography Introduction to symmetric key cryptography and Pseudo Random Number Generator (PRNG), The Feistel cipher, Data Encryption Standard (DES), Analysis, Multiple DES, Security and the avalanche effect, Mathematics- I: Galois fields, Polynomials- Advanced Encryption Standard (AES), Transformation functions, Key expansion, Analysis of AES, Block and Stream ciphers, Block cipher modes of operation, Drawback of symmetric key cryptography and Hashing techniques. 14 Hours Unit 3: Public Key Cryptography and Hashing techniques. Introduction, Mathematics- II: Prime number, Primitive root, Prime factorization, The RSA algorithm, Diffie-Hellman key exchange, Elgamal cryptographic system, Elliptic curve cryptosystem, Digital Certificates, Cryptographic hash functions: Introduction, Applications, Collision resistance, Secure Hash Algorithm (SHA), Message Digest algorithm (MD5). 14 Hours Unit 4: Hashing Techniques and key Key-Distribution Centre (KDC), Kerberos, Public Key Infrastructure (PKI) and standard (PKCS), Birthday attack, Entity authentication methods: Password, Challenge-Response, Zero knowledge protocols. Introduction to Post-Quantum cryptography, Types of Quantum-Resistant Algorithms, Key Algorithms in DOC. DOC in Emerging Tachaplaciae						
	UE23CS342AA4 B.Tech CSE(AI & ML) 5 SEED labs, Python Programming Language Cryptography is the science of secu fundamentals of cryptography, as practice. Students will have opport • To enable understanding f • To discuss about various se • To understand the concep • To introduce message auti • Explore emerging cryptogr Unit 1: Classical Ciphers. Introduction to Cryptography, Cr Mathematical background for cryp toprobability,Conditionalprobabilite and Hillcipher, Transposition cipher ciphers. Shannon's theorem and Pe Unit 2: Symmetric Key Cryptograph Introduction to symmetric key cryp cipher, Data Encryption Standard Mathematics- I: Galois fields, Pe functions, Key expansion, Analysis Drawback of symmetric key cryptography an Introduction, Mathematics- II: Prin Diffie-Hellman key exchange, Ele Certificates, Cryptographic hash fu Algorithm (SHA), Message Digest al Unit 4: Hashing Techniques and kee Key-Distribution Centre (KDC), Kerk attack, Entity authentication method Introduction to Post-Quantum cryp PQC, PQC in Emerging Technologies	UE23CS342AA4 Course Title B.Tech CSE(AI & ML) Hours perweek/ Credit Assigned 5 Type of Course 5 SEED labs, Python Programming Language Desirable Knowledge Cryptography is the science of securing data by using fundamentals of cryptography, as well as its appli practice. Students will have opportunities to dwell were • To enable understanding foundations of Cry • To discuss about various symmetric encrypt • To understand the concept of public key cry • To introduce message authentication and h • Explore emerging cryptography and future for Mathematical background for cryptography induction to probability, Conditional probability, Lawoftotal proba and Hillcipher, Transposition cipher -Railfence, Colur ciphers. Shannon's theorem and Perfect secrecy, On- Unit 2: Symmetric Key Cryptography Introduction to symmetric key cryptography and Psec cipher, Data Encryption Standard (DES), Analysis, Mathematics- 1: Galois fields, Polynomials- Adva functions, Key expansion, Analysis of AES, Block an Drawback of symmetric key cryptography and Hashing techni Introduction, Mathematics- 11: Prime number, Prim Diffie-Hellman key exchange, Elgamal cryptograph (Certificates, Cryptographic hash functions: Introduce Algorithm (SHA), Message Digest algorithm (MD5). Unit 4: Hashing Techniques and key Key-Distribution Centre (KDC), Kerberos, Public Key I attack, Entity authentication methods: Password, Ch Introduction to Post-Quantum cryptography, Types of PQC, PQC in Emerging Technologies.	UE23CS342AA4 Course Title Applied B.Tech CSE(AI & ML) Hours per week/ Credit Assigned L 5 Type of Course Elective - Course 5 Type of Course - SEED labs, Python Programming Language Desirable Knowledge - Cryptography is the science of securing data by using mathema fundamentals of cryptography, as well as its applications ar practice. Students will have opportunities to dwell well into pro- tion on derstanding foundations of Cryptography • To enable understanding foundations of Cryptography • To discuss about various symmetric encryption techni • To understand the concept of public key cryptography • To introduce message authentication and hash functions. Unit 1: Classical Ciphers. Introduction to Cryptography, Cryptanalysis and brute-force Mathematical background for cryptography: Modulo arithmet toprobability,Conditionalprobability,Lawoftotalprobability.Clas and Hillcipher, Transposition cipher -Railfence, Columnar and I ciphers. Shannon's theorem and Perfect secrecy, One-time pace Unit 2: Symmetric Key Cryptography Introduction to symmetric key cryptography and Pseudo Rand cipher, Data Encryption Standard (DES), Analysis, Multiple Mathematics- I: Galois fields, Polynomials- Advanced Enc functions, Key expansion, Analysis of AES, Block and Stream of prawback of symmetric key cryptography and Hashing techniques. Introduction, Mathematics- II: Prime number, Primitive root Diffie-Hellman key exchange, Elgamal cryptographic syste Certificates, Cryptographic hash functions: Introduction, Appl Algorithm (SHA), Message Digest algorithm (MDS). Unit 4: Hashing Techniques and key Key	UE23CS342AA4 Course Title Applied Cryptograph B.Tech CSE(AI & ML) Hours per week/ Credit Assigned L T 5 Type of Course Elective - I Implication 5 Type of Course Elective - I Implication SEED labs, Python Programming Language Desirable Knowledge - Implication Cryptography is the science of securing data by using mathematical concepts fundamentals of cryptography, as well as its applications and issues of P practice. Students will have opportunities to dwell well into problem solving • To enable understanding foundations of Cryptography. • To discuss about various symmetric encryption techniques. • To understand the concept of public key cryptography. • To introduce message authentication and hash function. • Explore emerging cryptography and future Directions. • To introduce message authentication and hash function. • Explore emerging cryptography: Modulo arithmetic, GCD, Eucli toprobability,Conditionalprobability,Lawoftotalprobability.Classicalciphers:S and Hillcipher, Transposition cipher -Railfence, Columar and Double colum ciphers. Shannon's theorem and Perfect secrecy, One-time pad encryption at functions to symmetric key cryptography and Pseudo Random Number G cipher, Data Encryption Standard (DES), Analysis, Multiple DES, Security Mathematics- I: Galois fields, Polynomials- Advanced Encryption Stan function, Mathematics. II: Prime number, Primitive root, Prime facto Diffie-Hellman	UE23CS342AA4 Course Title Applied Cryptography B.Tech CSE(AI & ML) Hours per week/ Credit Assigned T P 5 Type of Course Elective - 1 5 Type of Course - SEED labs, Python Programming Language Desirable Knowledge - Cryptography is the science of securing data by using mathematical concepts. This course fundamentals of cryptography, as well as its applications and issues of how cryptograprare practice. Students will have opportunities to dwell well into problem solving and hands-our practice. Students will have opportunities to dwell well into problem solving and hands-our practice. Students will have opportunities to dwell well into problem solving and hands-our practice. Students will have opportunities to dwell well into problem solving and hands-our practice. Students will have opportunities to dwell well into problem solving and hands-our practice. Students will have opportunities to dwell well into problem solving and hands-our practice. Students will have opportunities to dwell well into problem solving and hands-our practice. Students will have opportunities to dwell well into problem solving and hands-our practice. Students of cryptography and future Directions. 0 To enable understanding foundations of Cryptography. 10 To introduce message authentibity. Classicaliciphers. Sustitution-C. and Hillcipher. 11 Classical Ciphers. Introduction to Cryptography. Cryptography and Pseudo Random Number Generator (PR cipher. Data Encryption Sta	UE23CS342A4 Course Title Applied Cryptography B.Tech CSE(AI & ML) Hours per week/ Credit Assigned L T P S 5 Type of Course Elective - I Implied Cryptography Implied Cryptography 5 Type of Course Implied Cryptography Implied Cryptography Implied Cryptography SEED labs, Python Programming Language Desirable Knowledge - Implied Cryptography Cryptography is the science of securing data by using mathematical concepts. This course will prese fundamentals of cryptography, as well as its applications and issues of how cryptography is up practice. Students will have opportunities to dwell well into problem solving and hands-on sessions • To enable understanding foundations of Cryptography. • To introduce message authentication and hash function. • To understand the concept of public key cryptography. • To introduce message authentication and hash function. • Explore emerging cryptography. Kryptanalysis and brute-force attack, Basic cryptographic prim Mathematical background for cryptography. Modulo arithmetic, GCD, Euclidean algorithm, Introd toprobability, Conditional probability, Lawoftotalprobability. Classicalciphers: Substitution-Caesar, P and HiliCipher, Transposition cipher - Allifence, Columan and Double columanz, Cryptanalysis of dci ciphers. Shannon's theorem and Perfect secrecy, One-time pad encryption and its limitations. Unt 2: Symmetric Key Cryptograph	

TextBook(s):	 Understanding Cryptography: A Textbook for Students and Practitioners ,Christoff Paar and Jan Pelzl, Springer 2010. Cryptography and Network Security: Principles and Practice, William Stallings,7th Edition, Pearson, 2017. Cryptography and Network Security,Behrouz A.Forouzan,3rd Edition,TataMcGraw Hill,2017.
Reference Book(s):	 Introduction to Modern Cryptography", JonathanKatz, Yehuda Lindell, 2nd Edition, CRC Press, 2015.
Course Outcome	 Explain classical encryption techniques, cryptographic primitives, and cryptanalysis methods, along with the mathematical foundations that support secure communication. [Bloom's Level: Understanding] Implement and analyze symmetric encryption algorithms such as DES and AES, including their structure, operation modes, and cryptographic strength. [Bloom's Level: Applying, Analyzing] Apply number-theoretic concepts to design and evaluate public-key algorithms including RSA, Diffie-Hellman, ElGamal, and elliptic curve cryptography. [Bloom's Level: Applying] Analyze and apply cryptographic solutions in real-world contexts such as secure messaging, e-payments, blockchain, HTTPS, and metaverse environments. [Bloom's Level: Analyzing, Applying] Discuss and explore post-quantum cryptographic principles and their role in securing future-proof cryptosystems. [Bloom's Level: Understanding, Evaluating]

Course Code	UE23CS342AA5	Course Title	Virtual	and Augmen	ted Reality			
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	С	
		Credit Assigned	4	0	0	4	4	
Semester	5	Type of Course	Elective -	• 1				
AI Tools /Tools/Languag es	Virtual and Augmented Reality - C/ C++/ JAVA/ Pythonusing OpenGL. Unit3D, ThreeJS, Blender, Cloud Compare, OpenGL, Unity ML Agents	Desirable Knowledg e	UE23CS252A- Data Structures.					
Prelude	This course presents an introductio designing and developing interactive	n to virtual and a e virtual and augr	augmented mented rea	d reality tech	nologies, with ces using bler	n an emph Ider and U	1asis on Jnity3D.	
Course Objectives:	 Introduce the use of geometric transformations on graphics objects, their application in composite form and its implementation. Impart the basics of computer graphics and Introduce graphics programming using OpenGL and Graphics Pipeline. Introduce Virtual and Augmented Reality essentials and understanding human physiological aspects with respect to virtual reality applications and user interfaces. Understanding of use of Artificial Intelligence in the field of Virtual and Augmented Reality and applying the concentration of virtual concentrations. 							
Course Contents	Unit 1: Geometric Objects and Tran Scalars, Points and Vectors, Three- Coloured Cube, Overview of 2D Tran Transformation in Homogeneous Co Matrices, Interfaces to Three Dimen	sformations Dimensional Prir nsformations: Ro pordinates, Conca Isional Applicatio	nitives, Co tation, Tra atenation o ns, Quater	ordinate Syst nslation and S of Transforma nion's.	ems and Fra Scaling, Affine ations, OpenG	mes, Moo e transforr GL Transfo 14	delling a mations, ormation	
	Unit 2: Graphical System and Programming and 3D Modelling The Programmer's Interface, Graphics Architectures, Programmable Pipelines. Graphics Programming: Programming Two Dimensional Applications. The OpenGL: The OpenGL API, Primitives and Attributes, Colour, Viewing, Control Functions, Polygons, Viewing, Control Functions, the gasket Program, Polygon and Recursion, The Three-dimensional gasket, Creating Scene on ThreeJS, Working with Three.Js Material and Geometries, Animations, Adding Physics, Working with Blender, Three.JS with React and WebXR.							
	Unit 3: Augmented and Virtual Rea	litv				14	Hours	
	Introduction to Augmented Reality: Definition and Scope, A Brief History, Examples, Requirements and Characteristics: Methods of Augmentation, Spatial Display Models, Visual Display, Stationary Tracking Systems, Mobile Sensors. Introduction: What is Virtual Reality, Modern VR Experience. Bird's Eye View: hardware, Software. Eye movement and its implications or VR. Tracking: 2D and 3D orientation, Tracking Position and Orientation, Tracking Attached bodies.					nts and Tracking e View: Tracking Hours		
	Unit 4: IO modalities, AI, and Behav	viour in VR	tracking "	Aultiple Com	ora Infrarad	Tracking	Natural	
	Feature Tracking by Detection, Inc Tracking, Interaction: Output and Scanning of environments. Reaction Intelligence in the System: Delibera	and Augmented Reality; marker tracking, Multiple-Camera Infrared Tracking, Natural by Detection, Incremental Tracking, Simultaneous Localization and Mapping, Outdoor on: Output and input modalities, Haptic interaction and Multimodal interaction. 3D conments. Reactive AI: Adaptability, Complexity and Universality, Feasibility, More System: Deliberative AI, Reinforcement learning through interaction, Imitation Learning						

	through human demonstration. 14 Ho	urs
TextBook(s):	 "Interactive Computer Graphics - A top-down approach with shader-based OpenGL", Edwa Angel and Dave Shreiner, Pearson Education, Sixth edition, 2012. Steven M. LaValle. Virtual Reality. Cambridge University Press, 2017, http://vr.cs.uiuc.edu/ (Lin to an external site.) (Available online for free). 	rd ks
	3. Creating Augmented and Virtual Realities, by Erin Pangilinan, Steve Lukas, Vasanth Moha PUBLISHED BY:O'Reilly Media, Inc.PUBLICATION DATE:March 2019.	ın,
Reference Book(s):	 "Interactive Computer Graphics: A Top -Down Approach with WebGL", Edward Angel, Pear Education, 7th Edition, 2015. Unity Game Development in 24 Hours, Geig, Mike. Sams Teach Yourself. Pearson Education, 20 "OpenGL Programming Guide": Mason Woo, Jackie Neider, Tom Davis, Dave Shrenier: 3rd Edit openGl version 1.2, Addision Wesley, 1999. Blender 3D Basic, Gordon Fisher, PACKT Publishing, 2nd Edition (Note: For working with rec version the course material for UNIT 4 can be substituted with appropriate web content. D. Schmalstieg and T. Höllerer. Augmented Reality: Principles and Practice. Addison-Wes Boston, 2016, JSBN-13, 978-0-32-188357-5 	rson 014. :ion, cent sley,
Course Outcome	 Apply techniques and methods of augmenting virtual objects in real space. Demonstrate the fundamentals of computer graphics and display pipeline systems and use Oper for complex 3D graphical visualization and demonstrate its applications. Apply techniques and tool to design a immersive virtual reality experience and graphics in great depth to more complex aspects of Image Processing, Tracking and Human Computer Interfacetc. Apply AI models and methods for creating dynamic interactive and adaptable virtual spaces. 	nGL ater ices,

Course Code	UE23CS342AA7	Course Title	Topic in Wireless and 5G Networks					
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	с	
		Credit Assigned	4	0	0	4	4	
Semester	5	Type of Course	Elective -	•				
Al Tools /Tools/Languag es	Cisco Packet Tracer, OMNET++	Desirable Knowledge	UE23CS2	52B – Compu	ter Networks			
Prelude	This course offers an in-depth understanding of wireless communication systems, covering WLAN, WPAN, and cellular networks from 1G to 5G. Students will explore key topics like wireless access methods, modulation schemes, MIMO, LTE, and 5G network architecture. The course also delves into emerging areas such as Network slicing, OpenRAN, SDN/NFV, 5G security, and applications in IoT, AI/ML, and digital twins. With a forward-looking perspective on 6G, the course balances theoretical knowledge with practical skills, preparing students for careers in wireless communication and pext-generation mobile networks.							
Course Objectives:	 Understand fundamental wireless technologies, IEEE 802.11 standards, and access methods. Learn modulation techniques, cellular architecture, and evolution of mobile communication 1G to 5G. Explore 4G and 5G architecture, protocol stack, authentication, and signaling mechanisms. Introduce 5G applications, security, SDN/NFV, and emerging trends toward 6G. 							
Course Contents	Unit 1: Overview of Wireless comm Introduction, Different Wireless Net of 802.11, Wireless Local Area Net CSMA/CA, ALOHA, Distribution Coo Multiple Access for Wireless Syste Technologies: Bluetooth, Bluetooth Protocols – DSDV, AODV, Dynami security issues in 802.11 – Static filt WPA2, Wireless Link Characteris applications.	Unit 1: Overview of Wireless communication Introduction, Different Wireless Networks – WWAN, WBAN, WPAN, WLAN, Different Wireless Standards of 802.11, Wireless Local Area Networks: IEEE 802.11, 802.11 Frame Format, Basic Access Methods – CSMA/CA, ALOHA, Distribution Coordinating Function (DCF), DIFS, SIFS, Point Coordination Function (PCF), Multiple Access for Wireless Systems – FDMA, TDMA, CDMA, OFDMA, 802.11 Physical Media, WPAN Technologies: Bluetooth, Bluetooth Protocol Stack, NFC, 6LOWPAN, LORAWAN, WiMAX, Adhoc Routing Protocols – DSDV, AODV, Dynamic Source Routing (DSR), MANET & VANET, Wireless networking and security issues in 802.11 – Static filtering based on MAC address, Wired Equivalent Privacy (WEP), WPA & WPA2, Wireless Link Characteristics, RFID: Concept, frequency band, classification of RFID tags,						
	14 Hours Unit 2: Advanced Wireless Technologies and Cellular Standards Wireless Modulation Schemes – Amplitude Modulation (AM), Phase Modulation (PM), Frequency Modulation (FM), Binary Phase-Shift Keying (BPSK), Quadrature Phase-Shift Keying (QPSK), Frequency Spectrum, Cellular Concept –basic mobile communication, Mobile systems concept: mobile terminal, base station (BS), mobile switching centre (MSC), Frequency Reuse, Techniques: Multiple-Input and Multiple-Output (MIMO), mmWave, massive MIMO, Small Cells, Handoff, Mobile Radio standards – AMPS, GPRS, GSM, UMTS, CDMA 2000, Evolution of Wireless Network generations (1G, 2G, 3G, 4G, 5G), How does a mobile connectivity work? Global System for Mobile Communication (GSM), 3G UMTS – architecture, Need for 3G, 4G and 5G technologies – architectural difference. Unit 3: Fundamentals of Cellular System 4G – LTE – EPC architecture, LTE protocol stack, UMTS vs LTE, Configuring LTE Control and Data Plane, Authentication Key Agreement in 4G LTE, Introduction to 5G, 5G Architecture, features, specifications and other procedures, 5G-SA/NSA, 5G vs 4G architectural differences, Simple call registration flow in 5G – AKA Authentication, Session establishment in 5G call flow, Signaling System No. 7 (SS7).							

	Unit 4: 5G Applications and Evolution to 6G OpenRAN, Network Slicing, Long Range Communication- Satellite Communication, VoLTE, SDN, NFV, Private 5G networks, Application use cases: Digital Twin, IoT, AI/ML, Satellite Communications, 5G Security and Beyond, Mobile Forensics, 5G Security, Introduction to 6G. 14 Hours
TextBook(s):	1. "Computer Networking: A Top Down Approach", James Kurose and Keith Ross, Pearson, 8 th Edition.
Reference Book(s):	 "Wireless and Mobile Network Architectures", Lin Yi-Bang and Clamtac Imrich, John Wiley & Sons 2001 "Wireless Communications and Networking", Vijay Garg, Morgan Kaufmann Publishers. "Wireless Network Security: Second Edition, by Wolfgang Osterhage, CRC Press. "Wireless and Mobile Networks: Concepts and Protocols", Dr. Sunil Kumar S. Manvi, Mahabaleswar S. Kakkasageri, Wiley India. "Wireless Communication and Networks: 3G and Beyond", ITI Saha Mishra, McGraw-Hill Education. "Wireless Communications: Principles and Practice", Theodore S. Rappaport "Introduction to Mobile Network Engineering: SGM, 3G-WCDMA, LTE and the Road to 5G", Alexander Kukushkin, 2018 John Wiley & Sons Ltd "5G Mobile and Wireless Communications Technology", AFIF OSSEIRAN, JOSE F. MONSRAT, PATRICK MARSCH, Cambridge University Press "5G Mobile Networks: A Systems Approach", Larry Peterson and OgMuz Sunay, 2020, Morgan & Claypool Publishers.
Course Outcome	 Explain wireless standards, access protocols, and security in wireless networks. Compare wireless modulation schemes and mobile communication generations. Analyze 4G and 5G network architectures and key protocols. Evaluate 5G applications, network slicing, and the transition to 6G technologies.

Course Code	UE23AM343AB1	Course Title	le Advanced Data Analytics				
Brogram	B.Tech CSE(AI & ML)	Hours per	L	Т	P	S	С
Flogram		week/					
		Credit	4	0	0	4	4
	-	Assigned		l <u>.</u>			
Semester	5	Type of	Elective	- 11			
AI Tools	Python and related libraries for	Desirable	Mathem	natics for (Computer S	Science En	gineers.
/Tools/Languages	Machine learning and Causal	Knowledge	vieldge Linear Algebra and its Applications. Also, students should be undertaking Machine				
	Inference.						
			Learning in parallel.				
Prelude	In this digital transformation era, busi	nesses across indu	stries are o	embracing	data scier	nce to gain	insights,
	optimize processes, and drive strateg	ic decisions. Two c	ore pillars	within th	is landscap	pe are Dat	a Mining
	and Data Analytics thinking. While tra	iditional data scien	ce focuses	on identi	fying corre	lation and	l building
	a machine learning model based on t	hat, causal inference	ce enhanc	es data an	alytics thir	iking by di	ving into
	such as medicine economics social	nierence is last be	coming an	n in portar aring as i	tallows u	ata scienci	e in neius
	questions. This course aims to give s	tudents a broad pe	erspective	of Data S	cience by	blending h	oth The
	course addresses them sequentially,	i.e., starting with d	ata mining	g, proceed	ling to do a	an end-to-	end data
	science job by starting from data and	then building a mo	del, and fi	nally elabo	orating on	causal infe	erence as
	an alternative approach in Data Analy	tics.					
Course	Learn to assess a dataset for	the data type, inte	r-relations	hips of fea	atures, and	l interpret	ation.
Objectives:	 Understand regression mode 	els and forecasting	echnique	s for time-	varying da	ta.	
	Get introduced to the concept	ot of causality and o	contounde	rs.			
Course	Learn various techniques for	Calculating causal I	mpact.				
Contents	Terminologies: Data Mining, Data An	alutics Business Ar	alytics D:	ta Scienc	a and Cau	cal Inform	nca Data
contents.	Science for Business- Data Mining v	vs. Data Analytics]	Thinking. I	Understan	ding Data:	Describir	ng Data -
	descriptive analysis, Understanding re	elationships and po	otential in	fluences b	etween di	fferent fac	ctors and
	their effect on outcome - ANOVA, S	Statistical measure	of associ	ative rela	tionship b	etween va	ariables -
	Correlation analysis. Case Study.						
							14 Hours
	Unit 2: Predictive Analytics						
	Preparing Data for Machine Learning	asks – Data Cleaning and Imputation, Data Transformation, Feature				, Feature	
	Series - Time series data component	ession-Simple and multiple linear regression, multivariate and nonlinear regression. Time					
	models for forecasting. AR model ider	ntification using AC	F/ PACE. c	oncept of	stationaril	tv – its imr	portance.
	testing for stationarity and converting	nd converting an on-stationary signal to stationary. ARMA and ARIMA modeling					
	Time Series modeling with Neural Net	work. Case Study.	•				
			14 Hours				14 Hours
	Unit 3: Introduction to Causal Infere	nce					
	Introduction to Causal Inference– V	Vhat is Causal Info	erence? C	ausal Infe	erence wo	rkflow, S	impson's
	Paradox, Causal inference vs. Traditio	onal Data Analytics,	Potential	Outcome	, Individua	I Treatme	nt effect,
	Fundamental problem of Cl, Factual	and Counterfactu	ais, Judea Letudios	Pearl's L	adder of (ausation,	Average
	testing and RCT Observational Studi	ence. Experimenta es - Causal effect u	nder conf	A/B lestin	lg allu KCT Interventic	n vs RCT	Δverage
	Treatment Effect (ATE) and Adjustme	es - causal effect of	ating Caus	al effect \	Nith single	binary Ti	reatment
	variables. Conditional Average Treatn	nent Effect (CATE).	Assumpti	ons and cl	hallenges i	n Causal II	nference.
	Formulating the Causal Inference prob	olem with a graph -	- Causal D	AG. Dealin	g with Con	nplex Grap	oh – Fork,
	chain, and Colliders, d-separation. Bac	ckdoor criteria. Cas	e Study.				
							14 Hours
	Unit 4: Estimating Causal Effect	alalaatu		augh a	-		V la - ···
	voith multiple binary treatment varia	ables – using meta	-iearners	such as S	-learner, I	-iearner,	x-learner
	aigorithms. with continuous treatme	ent variables - Pro	pensity S	core, usin	ig propens	sty score	то спеск

	ositivity assumption, and calculation of ATE. Estimating Causal Effect with Linear Models. Double ML – htroduction to Double Machine Learning, Heterogeneous Treatment Effect, Confidence Interval. Do Why				
	and EconML. Case Study.				
	14 Hours				
Text Book(s):	 "Business Analytics, The Science of Data-Driven Decision Making", U. Dinesh Kumar, Wiley 2022, second edition. 				
	 "Lecture Notes on Introduction to Causal Inference from a Machine Learning Perspective by Brady Neal, 2020", available online: <u>https://www.bradyneal.com/causal-inference-course</u>. 				
	 "Causal Inference and Discovery in Python: unlock the secrets of modern causal machine learning with DoWhy, EconML, Pytorch and more": by Aleksander Molak (Author), Ajit Jaokar (Foreword), May 2023. 				
Reference	1. "The Book of Why: The New Science of Cause and Effect" by Judea Pearl and Dana Mackenzie.				
Book(s):	 "Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking", Foster Provost, 2013. 				
	3. Data Mining: Concepts and Techniques by JiaweiHan, Micheline Kamber and Jianei, The Morgan Kaufmann Series in Data Management Systems, Elsevier publications, 3rd Edition, 2012.				
Course	Perform data analysis using techniques such as ANOVA and Correlation Analysis.				
Outcome	 Perform predictive analytics for regression setup and time series analysis for a dataset with a temporal dimension. 				
	 Learn to use causal inference in the presence of confounding variables. 				
	Calculate Average Treatment Effect using various methods.				

Course Code	UE23AM343AB2	Course Title	Privacy-Preserving Machine Learnin				ing
Brogram	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С
Flogram		week/	4	0	0	4	4
		Credit Assigned					
Semester	5	Type of Course	Elective	e - 11			
AI Tools	Python libraries and tools used for	Desirable	Mather	natics for C	omputer	Science	
/Tools/Languages	PPML, such as PySyft.	Knowledge	Enginee	ers, Linear A	Algebra a	nd its	
			Applica	tions. Also,	students	should b	be
			underta	aking Mach	ine Learn	ing in pa	rallel.
Prelude	Fueled by recent advancements in data collected. While machine learning mode	science, machine lea els trained on this da	rning, an ata can s	d AI, our d ubstantially	ata is cor v benefit	ntinuousl individu	y being als and
	society, they pose significant risks, includ	ing serious privacy b	reaches.	Therefore,	we face	the chall	enge of
	balancing two opposing goals, i.e., maxim	izing the utility of ma	chine lea	rning mode	els while s	afeguard	ling the
	privacy of individuals whose data is analy:	zed. How can we achi	eve high	utility and	robust pr	ivacy, or	at least
	find an optimal trade-off? This interdise	ciplinary course add	resses th	is issue by	focusing	g on diff	erential
	privacy—a mathematical approach that	at provides strong	guarant	ees—and	explores	an algo	orithmic
	framework for developing practical priva	cy-preserving algorit	hms for c	data analyti	cs and m	achine le	earning.
	The course also deals with modern m	ethods of decentra	lized pri	vacy, i.e.,	Federate	ed learni	ng and
	compressive privacy, and ends with appli	cations of techniques	learned	in the heal	thcare do	omain.	
Course	 Learn the concept of privacy-pre- learn differential and least differential 	serving machine lear	ning (PPI	VIL) and dif	ferential	privacy.	
Objectives:	Learn differential and local difference	ures in data generati	on				
	 Learn decentralized privacy com 	nressive privacy	011.				
		pressive privacy.					
Course	Unit 1: Introduction to Privacy-Preservir	ng Machine Learning	and Diff	erential Pri	vacy Fou	ndation	
Contents:	Need - Privacy consideration in machine	learning, the threat o	of learnin	g beyond t	he purpo	se, Threa	ats, and
	attacks for ML systems - private data in	clear, reconstruction	attack, r	nodel inver	sion atta	ck, mem	bership
	inference attack, de-anonymization attac	k, the challenge of pr	ivacy pro	tection in B	ig Data a	nalysis. I	Privacy-
	preserving machine learning (PPML) or	verview–Differential	Privacy,	Local Diff	erential	Privacy,	Privacy
	Preserving Synthetic Data Generation	Privacy-Preserving	Data N	Mining, an	d Comp	ressive	Privacy.
	Differential Privacy- concept of differentia	al privacy, mechanish	ns of diffe	erential priv	acy – Bir	iary Mecl	nanism,
	group privacy property composition pro-	nism. Properties of d	interentia	ai privacy –	postproc	essing pr	operty,
		Jerty.				1,	4 Hours
						-	+ Hours
	Unit 2: Applying Differential Privacy in N	Aachine Learning and	d Local D	ifferential	Privacy		
	Applying Differential Privacy in Machine	e Learning- input po	erturbati	on, algorith	nm pertu	irbation,	output
	perturbation, objective function perturb	ation. Differentially	private s	upervised	learning	algorithn	n–naïve
	bayes, logistic regression, and linear regr	ession. Differentially	private u	unsupervise	d learnin	ig algorit	hm – k-
	means. Differentially private dimensional	ity reduction algorith	m – PCA				
	Local differential privacy - Mechanisms	of local differential	privacy (LDP) - rand	lomized	response	, direct
	encoding, histogram encoding, binary	encoding, Laplace n	nechanisr	m, Duchi's	mechan	ism, Pie	ecewise
	mechanism. Applying local differential p	rivacy in machine lea	arning —	- LDP Naïve	Bayes w	with discr	ete and
	continuous features. Evaluating the Perfo	rmance of various LL	P protoc	COIS.		1.4	
	Linit 2. Drivacy Processing cynthetic date	generation				14	Hours
	Importance of synthetic data application	of synthetic data in r	rivacy pr	eservation	Assuring	nrivacy	via data
	anonymization- private information sha	ring vs. privacy cor	ncern. k-	anonymity	against	re-identi	fication
	attack, anonymization beyond k-anonym	ity. Differential priva	cy techn	iques for s	/nthetic d	data gene	eration.
	Case Study on Private Synthetic Data Ger	neration. Privacy Pres	serving in	data proce	essing-pr	otecting	privacy
	by modifying input, protecting privacy wh	nen publishing data –	data sar	nitization by	v k-anony	mity, l-di	versity,
	t-closeness.						
						14	Hours
	Unit A. Decembralized Drivery Co	ine Dubre at					
1	Unit 4: Decentralized Privacy, Compress	ive Privacy					

£USTIV	Introduction to Decentralized Privacy-Preserving Machine Learning Algorithms - Federated Learning. Compressive privacy- Concept. Mechanisms of compressive privacy - Principal Component Analysis and Discriminant Component Analysis (DCA).
	14 Hours
Text Book(s):	 Privacy-Preserving Machine Learning -J Morris Chang, D Zhuang, Manning. Privacy-Preserving Machine Learning – Srinivasa Rao Aravilli and Sam Hamilton, Packt Book, 2024.
Reference Book(s):	 Privacy Preserving Machine Learning (Springer Briefs on Cyber Security & Networks), 2022. Privacy Preserving Data Mining: models and applications, Charu C Agarwal, 2008. C. Dwork and A. Roth, The Algorithmic Foundations of Differential Privacy, Foundations and Trends in Theoretical Computer Science, 2014.
Course Outcome	 Implement PPML for machine learning algorithms. Implement differential and local differential privacy preservation for machine learning algorithms. Implement privacy preservation techniques in data generation systems. Implement compressive privacy and decentralized differential privacy for Machine Learning systems.

Course Code	UE23AM343AB3	Course Title	Optin	nization a	and Metah	euristics	
Brogram	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С
Fiografii		week/	4	0	0	4	4
		Credit					
		Assigned					
Semester	5	Type of Course	Elective	e - II	<u> </u>		
AI Tools	Python and various search and	Desirable	Mathe	matics fo	r Compute	r Science	
/ TOOIS/Languages	optimization libraries in Python, such as	Knowledge	Applica	ers, Linea	ir Algebra a	nu its s should h	0
	scinv DFAP etc		undert	aking Ma	chine Lear	ning in nar	allel
Prelude	Optimization is a ubiguitous challenge in c	lifferent scientific pr	oblems.	specifica	Ilv machine	e learning.	and this
Trendde	course equips students with a broader u optimization in other machine learning search/optimization problems for non-diff deterministic search algorithms of both ty approaches such as trajectory-based he connects the dots between derivative-fre metaheuristics in hyperparameter optimiz	inderstanding of op g courses. It deals ferentiable objective pes, i.e., blind and ir uristics and popula ee and derivative-d ation in machine lea	optimization by complementing the learning, and this optimization by complementing the learning of als with metaheuristics-based approaches for ive functions. The course starts by discussing the d informed search, and then forays into stochastic ulation-based heuristics. Ultimately, the course e-dependent optimization by applying stochastic learning models.				
Course	 Learn search vs. optimization and 	deterministic searc	h algorit	hms.			
Objectives.	 Learn stochastic population-base 	d metaheuristics.					
	 Learn metaheuristic-based deriva 	itive-free optimizatio	on in ma	chine lea	rning.		
Contents:	Search Search Search and optimization – Introduction to problem and Classification of optimization structured and ill-structured problem Metaheuristics, and Nature-inspired algor global search, Deterministic vs. Stochastic algorithms & Shortest Path Algorithms (u Search algorithm – Minimum Spanning Tr search). Applications- Blind Search and Inf Unit 2: Trajectory-based Stochastic meta Simulated Annealing – Physical annealing final temperature, annealing schedule. Ca Tabu Search (TS) – Enhance the opportur aspiration, and adaptation. Applications – Problems, and Solving continuous problem Unit 3: Population-based Stochastic meta Evolutionary, Nature-Inspired, and Swarm Algorithm. Implementation of genetic algo intelligence- Particle Swarm Optimization update, neighborhood. Binary PSO. Perm Colony Optimization (ACO) – ACO metaho Unit 4: Evolutionary Machine Learning Opportunities of evolutionary computing selection. Hyperparameter optimization Hyperparameter Optimization. GA optimiz	o search and optim n problems – variabl s. Exploration-Ex- ithms. Classification algorithms. Determ niform cost search, ree, Shortest Path A ormed Search in the heuristics , pseudocode, Trans se Study in continue nity for local search solving Constraint s solving Constraint s solving Constraint s ns. aheuristics n intelligence algorit gorithm in Python. F (PSO)- Continuous nutation PSO. Adapt euristics.	hization. les, cons qploitatic of searc inistic Bli Bidirecti Igorithm Routing sition pro sition pro and c . Tabu S satisfacti hms. Ge Real valu PSO - r cive PSO.	Basic in traints, a on dilem h & optin ind searc onal Dijk s (Hill cli g Problem obability, discrete c Search alg ed GA. Po motion e . Solving	gredients of nd objectiv ima in s nization alg h on graph stra). Dete mbing, Bea is. Cooling so optimization gorithm – f ems, Solvir orithm (GA ermutation quation, in TSP Proble eter optim uting such (MLP) in Ne	of an optime function earch. He gorithms – s - Graph T rministic In am Search. thedule, in n problem: memory star ing TSP and the search of the search of th	mization is. Well- euristics, local vs. Traversal nformed , and A* L4 Hours itial and s. tructure, Routing L4 Hours Genetic Swarm o, fitness PSO. Ant 4 Hours d model d GA to Applying

FRSTTV	
	14 Hours
Text Book(s):	1. "Natural Computing Algorithms", Anthony Brabazon, Michael O'Neill, Seán McGarraghy, Springer, Natural Computing Series, 2015.
	2. "Evolutionary Deep Learning: Genetic algorithms and neural networks", Micheal Lantham, Manning Books, 2023.
	3. "Algorithms for Optimization", Mykel J. Kochenderfer and Tim A. Wheeler, MIT Press, 2019.
Reference	1. "Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies", Floreano D. and
Book(s):	Mattiussi C., MIT Press, Cambridge, MA, 2008.
Course	Should be able to implement informed search metaheuristics.
Outcome	 Should be able to implement trajectory-based metaheuristics.
	 Should be able to implement population-based metaheuristics.
	 Should be able to implement metaheuristics-based derivative-free optimization in machine learning.

Course Code	UE23AM343AB4	Course Title	Supply Chain Optimization Using AI				1
Drogram	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С
Program		week/	4	0	0	4	4
		Credit Assigned					
Semester	5	Type of Course	Elective -	II			
AI Tools	Python and various search and	Desirable	-				
/Tools/Languag	optimization libraries.	Knowledge					
es							
Prelude	This course explores the application of management (SCM) processes. It covers A machine learning models, and decision-mak design, implement, and evaluate AI-driven s chain resilience.	Artificial Intelligence Al fundamentals rele ing algorithms. The c olutions that enhance	e (AI) tech evant to Se course aims ce efficiency	e (AI) techniques to optimize supply chain evant to SCM, including predictive analytics, ourse aims to equip students with the skills to e efficiency, reduce costs, and improve supply			
Course	 Understand the key components ar 	nd challenges of mod	ern supply	chains.			
Objectives:	 Learn about the various AI technology 	gies applicable to SC	CM optimiza	ation.			
	 Explore case studies of AI application 	ications in forecas	ting, logist	tics, inve	entory m	anageme	ent, and
	procurement.						
	Develop and implement AI models	to solve real-world S	CM probler	ns.			
Course	Unit 1: Introduction to SCM and Al						
Contents:	Overview of supply chain management, Ba	asics of AI and its r	elevance to	D SCIVI, F	keview of		1010gles:
	his data in SCM, Introduction to Al tools and	II Language Processii	ng, History	and evol	ution of A	ai in scivi	, Role of
	big data in SCIVI, introduction to AI tools and		punizatio	1.			
	Unit 2: Al in Supply Chain Forecasting and	Planning				-	
	Demand forecasting models. Predictive analy	tics for supply chain	planning C	ase studi	es on Al-c	lriven for	ecasting
	Techniques for improving demand accuracy	, AI in production p	lanning and	d schedu	ling, Scer	nario ana	lysis and
	simulation using AI, Case studies on AI appli	cations in supply cha	in planning		0,		,
		,				-	14 Hours
	Unit 3: AI in Inventory and Logistics Manag	ement					
	Inventory optimization techniques, AI for w	arehouse manageme	ent and aut	omation	, Enhanci	ng transp	ortation
	and logistics with AI, Real-time tracking and	monitoring with AI,	Al-driven ro	oute opti	mization,	Role of A	Al in last-
	mile delivery, Case studies on AI application	s in logistics.					
			14 Hours				4 Hours
	Unit 4: Al in Procurement and Supplier Rel	ationship Managem	;ement				
	All applications in procurement processes management and compliance using AI, AI in and AI for supply chain transparency, Case s	, Supplier selection contract manageme tudies on Al applicat	and perfo nt, Al-drive ions in proc	ormance n negotia curement	assessme ation stra :.	ent with tegies, Bl	AI, RISK ockchain
						1	14 Hours
Reference	1. "Supply Chain Management and Ad	vanced Planning: Co	ncepts, Mo	dels, Sof	tware, an	d Case St	udies"
Book(s):	by Hartmut Stadtler and Christoph	Kilger.					
	2. "Artificial Intelligence for Supply Ch	ain Management: Te	chniques a	nd Appli	cations fo	r Improve	ed
	Efficiency and Effectiveness" by N.	Viswanadham. It focu	uses on how	v Al can l	be applied	d to vario	us
	aspects of supply chain management	nt to improve operat	ions.				
	3. "Data Science for Supply Chain Fore	ecasting" by Nicolas \	/andeput.				
Additional	Access to AI development tools and	software for SCM a	pplications				
Resources:	 Collaboration with industry partner 	rs for practical insigh	ts and case	studies.			
Course	 Identify areas within COM that area 	he entimized with a					
Course	Identity areas within SCIVI that can Apply Al and machine learning tech	piques to prodict tro	I. nds antimi	izo invor	tony and	improve	
Outcome	 Appry Ar and machine rearning tech logistics 	inques to predict tre	nus, opum	ize inven	tory, and	mpiove	
	 Evaluate the impact of Al-driven co. 	lutions on supply cha	in nerform	ance			
	 Design a project that implements a 	n Al solution for a sn	ecific aspec	t of SCM			
			come aspec		-		

Course Code	UE23AM343AB5	Course Title	Machine Learning with Business Data				
Dragram	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С
Program		week/	4	0	0	4	4
		Credit Assigned					
Semester	5	Type of Course	Elective - II				
AI Tools	Python along with standard machine	Desirable	Mathematic	s for	Compu	ter Sc	ience
/Tools/Languag	learning libraries such as ScikitLearn,	Knowledge	Engineers,	Linear	Algebra	a and	its
es	XGBoost,LightGBM, CatBoost will be used.		Applications	. Also,	students	should	l be
	Specific to tabular data, the libraries like		undertaking	Machine	Learning	in paralle	ગ.
	TabNet, Pytorch Tabular, etc.,						
Prelude	Today, immense public interest, most resear data. In this course, we shift the priority s operates, i.e., tabular data. Tabular data is uk data, cybersecurity, credit scoring, finance, a which in turn progress scientific knowledge analytics and machine learning on tabular of data scientist role in the future, while offer concepts.	ch initiatives, and mo lightly to the modal piquitous in the real v and natural sciences. and influence public latasets and prepare ing a much-needed	ost commercial ity of the dat vorld, i.e., elec Quantitative r policy. This ha es students asp hands-on expe	l incentive a on whit tronic hea research r ands-on c piring for erience fo	es are on t ch the bu althcare re relies on t course inv an indus or the ma	ext and in usiness m ecords, ce hese data estigates try-embe chine lea	mage nainly ensus asets, data edded irning
Course	 Learn the importance of tabular bu 	siness data and expl	oratory analys	is on such	ı data.		
Objectives:	 Learn classical ML approaches on ta 	abular business data.					
	 Learn deep learning libraries on tab 	ular business data.					
	 Learn how to ensemble classical and 	d deep learning meth	ods while prov	viding inte	erpretabil	ity.	
Course	Unit 1: Introduction to Tabular Data and Ex	ploring Tabular Dat	asets				
	Tabular Data – row and column character Exploratory Data Analysis of Tabular Busine Business Data. Case Study – Exploratory data and Classical Machine learning approaches – Unit 2: Classical Machine Learning with Tal Exploring and processing a tabular dataset – Gradient Boosting – explaining its effectiven parameters, applying early stopping. Advance missing data with Gradient Boosting algorith and Backward selection. Optimizing hyperp Case Study - An end to end implementation	eristics, possible isso ess Data. Classical M ta analysis of a tabul - transparency and e Dular Business Data - Scikit Learn pipeline tess and applying ear ted Feature processin ms, Feature selection arameters – random on a tabular busines	ues in tabular achine Learnin ar business da fficacy of the a e, Decision Tre ly stopping to ng –handling n n methods – st n, grid search, s dataset using	r busines ng vs. De ataset, co approache avoid ove nissing da ability sel Bayesian g XGBoost	s data, a ep Learni mparing l es. mely ranc erfitting, 3 ta imputa ection, Bo , and mai t.	Ind reme ng on Ta Deep Lea 14 H domized t XGBoost ition, han oruta, For nual metl	edies. bular rning Iours trees, – key udling ward hods.
						14 H	lours
	Unit 3: Deep Learning with Tabular Busines Deep Learning with Tabular Data Ecosystem – Tensorflow, Keras, (Tabnet, DeepTable), Py Flash, fastai), Pytorch with Tabnet and Lightu : processing the columns, defining the normalization.	(low level API, high I vtorch stack –Pytorch ning Flash, Case Stud model, Training t	evel API, tabul n, Lightning, (P y – Deep Learn he model –c	ar data lik ytorch Ta ling on a t cross vali	orary): Ter bular, Tak abular Bu idation, I	nsorflow onet, Ligh siness da regulariza	stack tning taset ation,
	 Unit 4: Blending YGBoost and Deen Loarnig	ng Internretability				14 H	ours
	Blending Gradient Boosting and Deep Learning Blending Gradient Boosting and Deep Learning learning solution on a platform (fastai, tab Ensemble the two methods, comparison. Interpretability of XGBoost: Interpretability global, model specific vs. model agnostic, int SHAP (Shapely Additive exPlanations), SHAP XGBoost Feature Importance vs. SHAP.	ning solution – selec netetc), Comparing vs. Explainability. T trinsic vs. posthoc.XC P Bar plot, Summary	t a tabular bu XGBoost and Ypes of interp Boost feature plot, Depende	isiness da selected o pretability Importar ence plot,	ataset, sel deep lear r techniqu nce. . Force plo	ecting a ning solu ues – loc ot. Comp	deep ution, al vs. aring
						14 H	Hours

NTVERSITY	
Text Book(s):	1. "Applied Machine Learning for Tabular Data", by Max Kuhn and Kjell Johnson, available online for reading
	2. "Modern Deep Learning for Tabular Data: Novel Approaches to Common Modelling Problems", Andre Ye and Zian Wang, Apress, 2022.
	3. "Machine Learning for Tabular Data: XGBoost, Deep Learning, and AI", Mark Ryan and Luca Massaron, Manning Book, 2025
Reference Book(s):	 "Why Tabular Foundation Models Should Be a Research Priority", Boris van Breugel and Mihaela van der Schaar, arXiv.
	 "Deep Neural Network and Tabular Data - a Survey", Vadim Borisov et al., IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024
	3. "TABULAR DATA: DEEP LEARNING IS NOT ALL YOU NEED", Ravid Shwartz-Ziv and Amitai Armon, Information Fusion, 2021.
	4. "Explainable Artificial Intelligence for Tabular Data : a Survey ", MARIA SAHAKYAN et al. IEEE Access, 2021
	5. " A Short Chronology Of Deep Learning For Tabular Data", Sebastian Raschka, 2022, Available online
	6. "Why do tree-based models still outperform deep learning on typical tabular data?", Léo Grinsztajn, Edouard Oyallon, Gaël Varoquaux, HAL Open Science, 2023.
Course	 Do exploratory analysis of a tabular business issues after addressing dataset issues.
Outcome	• Do classical ML, specifically XGBoost, on tabular business data.
	 Do deep learning models on tabular business data.
	• Do an ensemble of deep and classical learning methods on tabular data and interpretability.

Course Code	UE23CS343AB5	Course Title	Advanced Computer Networks				
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	С
		Credit Assigned	4	0	0	4	4
Semester	5	Type of Course	Elective	- 11			
Al Tools /Tools/Language s	GNS3, Cisco Packet Tracer, Mininet	Desirable Knowledge	Compu	ter Networks.			
Prelude	The Advanced Computer Networl (OSI model, TCP/IP, ARP etc.). T theory and practical. From this p networking and covers fundamer routing protocols and switching. the students find themselves con networking.	ks course is designed he course builds its erspective, the cou ntals that are used t The course aims to nfortable in taking e	d for studer s contents rse introdu to develop o provide in hither the d	nts who have l by considerin ces advanced few of the adv formation so irection- indu	basic knowled g a mixed ap topics that a vanced techn that at the e strial job or fu	dge of netv oproach in re basic bl ologies, in nd of the urther rese	vorking volving ocks of cluding course, earch in
Course Objectives:	 Provide in-depth study of dynamic and distance vector routing protocols. To learn about Layer 2 Switching in detail. To get an insight of Link State routing protocols. To explore the new approach of Networking, SDN and NFV. 						
Course Contents	Unit 1: Dynamic and Distance Vector Routing, Access Lists IP Routing Process, Static routing – IPv4/IPv6, Floating Static Routes, Load Sharing, Fast and Process Switching Distance Vector Routing – RIPv2 packet format, classless Routing, compatibility with RIPv1, Metric Calculation, Route Summarization, Standard IP and Extended IP access lists, Calling access lists, Named access lists. Unit 2: Exterior Gateway Routing Protocol (EIGRP), Layer 2 Switching, Spanning Tree Protocol (STP), Virtual LAN (VLAN) EIGRP – Neighbor discovery, Reliable Transport Protocol (RTP), Diffusing Update Algorithm (DUAL), VLSM and Summary Routes, Metrics – Maximum Paths & Hop Count, Load Balancing with EIGRP, Discontiguous Networks, Auto summarization, passive interface Layer 2 switching, Bridging vs LAN Switching, Forwarding Table, Spanning Tree Protocol and its operations, VLAN Basics, Static and Dynamic VLANs, VLAN Trunking Protocol (VTP), Routing between VLANs, configure VLANs and Inter-VLAN routing, MAC VLANs, VXLAN Unit 3: Link State Routing Protocols – OSPF & BGP Open Shortest Path First (OSPF)v2 – OSPF packet format, Network Types, Designated Routers and Backup Designated Routers (DR & BDRs), OSPF Neighbors, Areas – Intra, Inter, External, Router Types, Virtual Links, Link State Database, LSA Types, Metric Calculation, Summary Routes, Route redistribution Border Gateway Protocol (BGP) – BGP Packet Format, External and Internal BGP.					vitching Metric access Hours Virtual gorithm EIGRP, itching, s, VLAN VLANs, Hours Backup al Links, ateway Hours	
	(NFV)Segment Routing, SDN Con OpenFlow Protocol, Data and Con Control and Data Planes, Virtual Sv	trol and Data Plan trol Plane Interacti witches, Micro-segr	e, SDN Co on Networ nentation.	ntroller and k Virtualizatio	Network-con on architectu	trol Applio re, Manag 14	cations, ement, Hours

VERSITY	
Text Book(s):	1. "Routing TCP/IP volume 1", 2nd Edition, Jeff Doyle, Cisco Press 2005.
	2. "Computer Networking: A Top-Down Approach", James F. Kurose, Keith W. Ross, 7th Edition, Pearson Publication, 2017 [For SDN]
Reference Book(s):	1. "Software-Defined Networks: A Systems Approach", Peterson, Cascone, O'Connor, Vachuska, and Davie, https://sdn.systemsapproach.org/index.html [For NFV]
	"TCP IP Protocol Suite", Behrouz Forouzan, 4th Edition, McGraw-Hill, 2010 [For BGP]
Course Outcome	 Designing a network topology by demonstrating the ability to configure routers with different routing techniques. Understand the concepts of Lavor 2 switching. VI ANs and its usage
	 Designing networks with one or multiple routing protocols and investigating its behaviour/features.
	• Comprehend features of Software Defined Networking (SDN) for next generation systems.

Course Code	UE23CS343AB6	Course Title	Computer Network Security				
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	С
		Credit Assigned	4	4	4		
Semester	5	Type of Course	Elective - II				
Al Tools /Tools/Languag es	SEED Ubuntu VM, Wireshark, Snort, Netwox, Scapy.	Desirable Knowledge	UE23CS252B – Computer Networks.				
Prelude	This course will give an overview and conceptual understanding of network related security aspects. Students will have opportunities to dwell well into technical "how to" with hands-on sessions and case study discussions.						
Course Objectives:	 To provide an overall view of Network Security and introduce the concept of packet analysis. To understand the security problems in the design and implementation of the TCP, IP/ICMP, ARP protocols. To learn the vulnerabilities in DNS protocol and to implement and experiment with Firewall rules. To provide an overview of network management techniques and implementation of VPN. To understand concepts of risk management and security aspects of wireless networks. 				s. ', ARP '		
Course Contents	Unit 1: Introduction, Packet Sniffing & Spoofing, MAC Layer Attacks, Network Layer Attacks CIA principles, Attack surface and types, Assets, Vulnerabilities and Threats, Countermeasures, Privacy, General Data Protection Regulation, Security vs Privacy, Data Breaches. Real Life Examples of Cyber Crime, Security framework, Job outlook. Packet Sniffing and Spoofing: Introduction, Sending packets: Network Interface Card (NIC), BSD packet filter (BPF). Packet sniffing: Receiving packets using sockets, Packet sniffing using PCAP API, Processing captured packets. Packet spoofing: Sending normal packets. Souffing ausing PCAP API, Processing captured packets. Packet spoofing: Sending normal packets. Using sockets, Constructing spoofed raw ICMP packets and UDP packets. Sniffing and then spoofing, Python vs Scapy, Endianness. MAC layer and attacks: The MAC layer, ARP protocol, ARP cache poisoning attacks, MITM using ARP cache poisoning, Demo, Countermeasure. 16 Hours Unit 2: TCP Attacks and DNS Attacks Network layer: IP, ICMP and attacks: IP protocol, ICMP protocol, ICMP redirect attack, Smurf and other ICMP attacks. Attacks on the TCP protocols: TCP overview, Send and receive buffers, SYN flood attack: TCP 3-way handshake, the SYN flooding attack, Launching the attack using Netwox and C, Countermeasure. TCP reset attack on Telnet, SSH and video streaming connections. TCP session hijacking attack: TCP session and session hijacking, Launching the attack, Hijacked TCP connection. Reverse shell: working, redirecting IO to TCP connection, Creating reverse shell. Countermeasure. DNS Attacks: DNS hierarchy, zones and servers, DNS query process, Constructing DNS request and response using Scapy, DNS attacks: Overview, Local DNS cache poisoning attack. (Kaminsky attack), Reply forgery attacks from malicious DNS servers, Countermeasure against DNS spoofing attacks, DoS attacks on DNS servers. Case Study – 1.Firewall:				 'ivacy, Crime, twork niffing ending d then cache Hours oblem ICMP 3-way 'reset k: TCP orking, rarchy, ttacks: Hours ervers, rewall: logies. oation 		

	Intrusion Detection and Prevention: Intruders, Intrusion detection, Analysis approaches, Host-based intrusion detection, Network-based intrusion detection, Distributed or hybrid intrusion detection, Honeypots, Example system: Snort. 14 Hours
	Unit 4: Virtual Private Networks, Wireless security Virtual Private Network: Introduction, Why VPN, analogy, and tunnelling. Overview of TLS/SSL VPN: Establishing a tunnel, Forwarding, and releasing IP packets, TLS/SSL VPN details. Building, Setup and Testing VPN. Bypassing Firewall using VPN. Case Study – 2. The Heartbleed Bug and Attack: Introduction and the Heartbeat protocol, Launching the attack, Fixing the Heartbleed bug. Wireless Security: Communications and 802.11 WLAN standards: Wired Equivalent Privacy (WEP), Wireless Protected Access (WPA), IEEE 802.1x, 802.11i/ WPA2, Wireless Network Threats. SOC and SIEM. 14 Hours
Text Book(s):	 Internet Security: A Hands-on Approach, Wenliang Du, 2nd Edition, 2019 Internet Security: A Hands-on Approach, Wenliang Du, 3rd Edition, 2022 "Computer Security: Principles and Practice", William Stallings and Lawrie Brown, 3rd edition, 2015
Course Outcome	 Sniff packets from clients and analyse them to extract important info such as headers, passwords etc. Launch DoS and MITM attacks using various protocol vulnerabilities and mitigate them. Configure firewalls on Linux machines and exploit vulnerabilities on DNS protocol. Design and implement VPN for a secure connection over the internet.Master in wireless network security systems in depth and perform effective network management.

Course Code	UE23CS343AB7	Course Title	ROS for Autonomous Systems					
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	С	
		Credit Assigned	4	0	0	4	4	
Semester	5	Type of Course	Elective - II					
AI Tools /Tools/Language s	C++, Python, Java, ROS, Rviz, Gazebo and Webots.	Desirable Knowledge	-					
Prelude	To introduce the foundational p programming using ROS (Robot Op simulation-based hands-on experio	nal principles of autonomous systems, focusing on mobile robotics and ot Operating System). The course integrates theoretical understanding with perience.						
Course Objectives:	 To introduce students to t such as sensors, actuators, To familiarize students w creation, topic communica To enable practical skills simulated robotic platform To develop an understat techniques such as SLAM. To provide exposure to r methods like reinforcement 	dents to the fundamentals of autonomous robotics, including key components actuators, and controllers. udents with the Robot Operating System(ROS) environment, including node ommunication, and workspace setup. ical skills in integrating and programming common sensors and actuators in c platforms. understanding of robot perception, environment modeling, and mapping as SLAM. Isure to robot navigation using ROS frameworks and modern learning-based iforcement and imitation learning.						
Course Contents	Unit 1: Introduction to Autonomous Robotics & Simulation Tools What is a robot? Definitions, types, and criteria, Sensors, actuators, controllers, Autonomous vs. telerobot systems; Environment classification. Overview of ROS, its architecture, and installation, RSVP: Robot Scenario Visual Planning; Hands-on Activities: Installing ROS and setting up workspace, Creating and launching ROS nodes (publisher/subscriber) Unit 2: Sensor Integration, Motor Control and Simulation Programming sensors: Color, ultrasonic, IMU, camera, Motor/servo characteristics and programming, Sensor packages and interfacing in ROS; Hands- on Activities: Simulating robot with LiDAR/camera in Gazebo, Sensor visualization with RViz and ROS topics, Motor movement control in a ROS simulation. Unit 3: Perception, Mapping, and Environment Modelling Environment perception: Coordinate frames, TFs, Introduction to mapping: occupancy grids, SLAM, RSVF and SPACES methodology for decision making; Hands-on Activities: Building a 2D map using SLAM, Simulating perception using TurtleBot3 in Gazebo. Unit 4: ROS Navigation Localizing the robot in a map, ROS Navigation Stack-hardware requirement- navigation packages, path planning, motion planning of robot – software requirement and configuration. Navigation using				elerobot Robot Mours Hours Mours Hours Hours SLAM, Hours es, path n using Hours			

RSTTY	
Text Book(s):	 Lentin Joseph, Robot Operating System (ROS) for Absolute Beginners: Robotics Programming MadeEasy, 1st Edition, APress, 2018.
	2. Jonathan Cacace; Lentin Joseph, Mastering ROS for Robotics Programming: Design, build, and simulate complex robots using the Robot Operating System, 2nd Edition, Packt Publishing, 2018.
Reference Book(s):	 Hughes, C. and Hughes, T., Robot programming: a guide to controlling autonomous robots. Que Publishing, 2016.
	 Quigley, M., Gerkey, B. and Smart, W.D., Programming Robots with ROS: a practical introduction to the Robot Operating System. "O'Reilly Media, Inc.", 2015.
	Recommended Materials: Robot Operating System (ROS): http://wiki.ros.org/ROS/Tutorials ROS2 tutorials: https://docs.ros.org/en/foxy/Tutorials.html
Course Outcome	 Identify and describe the essential components and classifications of autonomous robotic systems. Configure and implement ROS-based simulations involving sensor-actuator integration using standard tools like Gazebo and RViz. Apply SLAM and environment modeling techniques for autonomous robot perception and mapping in simulated environments. Develop and test navigation algorithms using the ROS Navigation Stack with path and motion planning capabilities. Demonstrate foundational knowledge of learning-based navigation strategies such as reinforcement and imitation learning in robotics.

Course Code	UE23CS351B	Course Title	Cloud Computing				
Program	B.Tech CSE(Al & ML)	Hours per week/	L	т	Р	S	С
		Credit Assigned	4	0	2	5	5
Semester	6	Type of Course	Core				
Al Tools /Tools/Languag es	Amazon AWS (or equivalent), AWS SkillBuilder, AWS Educate, Qwiklabs, Docker, Kubernetes, Jenkins, Zookeeper, Github, NoSQL database, Flask, Python, Go Lang. AWS Sagemaker	Desirable Knowledge	UE23CS252B - Computer Networks UE23CS241B- Operating Systems.				
Prelude	The cloud computing course introduces not only the various technologies that go into building a cloud native application, but also how cloud systems are designed. The student is introduced to various tools and design techniques/trade-offs. It also gives a flavour for the business relevance/ethics of using cloud computing. This course requires the student to have a desirable knowledge of Computer Networks and Operating System.						
Course Objectives:	 Introduce the rationale behind the cloud computing revolution and cloud native application architecture. Explore the concepts of Virtualization and Containerization. Explore the concepts of Distributed storage and its various techniques. Design distributed systems for scalability and expose the student to various trade-offs in designing cloud architectures. 						
Course Contents	Unit 1: Cloud Programming Models Parallelcomputing, Gridcomputing, IntroductiontoCloudProgrammingModelsandserviceModels, Introduction to technology challenges with Distributed & amp; Cloud computing, Business Drivers - deployment models, Multi-cloud, Cloud architecture and IaaS programming model, Web Services and REST, PaaS Programming Model, Communication using Message queues- Pub Sub model, SaaS Programming model – Microservices and differences with the traditional monolithic model; challenges of migrating monolithic applications. Microservice transactions with Saga pattern. 14 Hours Unit2: Virtualization						
	Hypervisor - Types, Para virtualization,Software-Binarytransla AMDv/Intel, Memory - Shadow page Virtualization - Containers and Nam Unionfs, Orchestration and Kubernet	tion and Transpare Ition,GoldbergPopek Itables, Memory - N espaces, Deploymer tes, DevOps, Jenkins	nt virtuali principles ested page nt of clouc pipeline.	zation, So forVirtuali tables, IC I native ap	ftware - 1 zation,Har), VM Migr plications	Trap and dware ration, Ligh through D 1	Emulate - ntweight Oocker – - 4 Hours

FRSTTY	
	Unit 3: Distributed Storage Types of Cloud storage - Block, Object stores, Replication, lag, multileader replication, Leaderless replication, Partitioning-key-value data, Consistent hashing, Partitioning -rebalancing partitions, Request routing, Consistency Models, CAP Theorem, Transactions, Two-phase commit
	14 Hours
	Unit 4: Cloud Controller, Performance, Scalability and Security
	Master-slave v/s p2p models, Resource allocation, Scheduling algorithms, Cluster coordination – consensus, Fault Tolerance - faults and partial failures, Failure detection - checkpointing and application recovery, Unreliable communication, Cluster coordination -leader election, distributed locking,CaseStudy: Zookeeper/Raft-distributed consensus infrastructure. Edge Computing and Fog Computing – principles and paradigms
	Scaling computation - reverse proxies, Scaling computation - hybrid cloud and cloud bursting, Multitenancy, Multitenant databases, Cloud security requirements - physical/virtual security, security design patterns, Container security features to work with Docker and Kubernetes, Authentication in the cloud:Keystone/IAM,Cloud Threats –Dos, Economic Denial of Sustainability.
	14 Hours
Laboratory	 Migrating a monolithice-commerce application to a microservices architecture. BuildingaTask Management Application with Raft Consensus Algorithm and MySQL. Microservices communication using RabbitMQ. Building a Distributed Key-Value Store with etcd. BackUp service using docker and Kubernetes. Building an E-commerce Microservices Application on Cloud using Docker, Kubernetes, Jenkins, and Git.
TextBook(s):	 "Distributed and Cloud Computing", KaiHwang, Jack Dongarra, Geoffrey Fox. ISBN:978-0-12- 385880-1, Morgan Kaufmann, 2012. "Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems", Martin Kleppmann. O's Reilly, 2017. "Fog and edge computing: principles and paradigms"/edited by Rajkumar. Buyya, Satish Narayana Srirama. Description:Hoboken,NJ,USA: JohnWiley & Sons.
Reference Book(s):	 "Docker in Action", Jeff Nickoloff, Manning Publications, 2016. "Cloud Native DevOps with Kubernetes", John Arundel and Justin Domingus, O Reilly, 2019.: "Moving to the clouds: Developing Apps in the new world of cloud computing", Dinkar Sitaram and Geetha Manjunath. Syngress, 2011.
Course Outcom e	 Comprehend the technical and business rationale behind cloud computing. Decide the model of cloud computing to use for solving a particular problem. Implement Microservice architecture through Containers and Orchestration tools. Analyse virtual machines and containers. Experiment with cloud storage Models such as object stores, key value stores. Apply the critical constraints such as Performance, scalability and security to the designed distributed system.

Course Code	UE23CS352B	Course Title	Object Oriented Analysis and Design				
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	s	с
		Credit Assigned	4	0	2	5	5
Semester	6	Type of Course	Core				
Al Tools /Tools/Languag es	Star UML, Object Oriented Programming Language(Java/C++)	Desirable Knowledge	-				
Prelude	In this course students will learn to perform Analysis on a given domain and come up with an Object- Oriented Design (OOD). Various techniques will be discussed and practiced which are commonly used in analysis and design phases in the software industry. Unified Modelling Language (UML) will be used as a tool to demonstrate the analysis and design ideas and an object-oriented programming language such as Java would be used to implement the design. The theory is supplemented with implementations which are demonstrated/ practiced in class which provides the hands-on experiences of implementing the patterns.						
Course Objectives:	 Familiarize students with static and dynamic models of object-oriented analysis and modelling using the unified modelling language (UML). Introduce students to object oriented programming concepts in Java. Make students appreciate the importance of system architecture design in software development. Introduce the students to understand the importance of GRASP and SOLID design principles. 						
Course Content s	Unit 1: Advanced OO, Object Oriented Analysis and Static Models and Diagrams OOA: Requirements, Modelling and Analysis, Introduction to UML, Use Case Modelling: Use Cases Diagrams. Class Modelling: UML Class Diagrams, OO relationships, CRC Diagrams, Component model, Deployment model, Activity Modelling: UML Activity Diagrams and Modelling, Guidelines. Behaviour Modelling: Sequence Diagram, UML State Machine Diagrams and Models, Advanced State Models. 14 Hours						
	Unit 2: Object Orientated Programming and Architecture design Object-oriented Programming: JVM, Abstraction, Encapsulation, Composition, Class Attributes, Behaviour, Objects, and Methods. Interface and Implementation: Role of Constructors and Destructors, Garbage Collector, Parameter Passing, Value Type and Reference Type, Overloading of Methods, Class Attributes and Behaviour:Difference between Class Methods and Instance Methods, Inheritance: Concepts of Single Rooted Hierarchy and Interface, Abstract Class in Programming Languages, Object Class in Java, Collection, Array, List and Stack; OO Development process, System Design and Frameworks, Architectural patterns, MVC architectural pattern. 14 Hours						
	14 Hours Unit 3: Design principles GRASP and its application to Object Design, Creator, Information Expert, Low Coupling, Controller, High Cohesion, Polymorphism, Pure Fabrication, Indirection and Protected Variations .SOLID: Single Responsibility, Open-Closed, Liskov Substitution, Interface Segregation, Dependency Inversion OO Design Principles and Sample Implementation of Patterns in Java. Introduction to Design Patterns, selection and usage of a design pattern. Creational Design Patterns Theory and Implementation in Java: Singleton Eactory						

FRSTTY	
	Builder and Prototype.14 Hours
	Unit 4: OO Design Patterns & Anti-Patterns Structural Patterns–Adapter, Façade, Proxy and Fly weight Behavioral Patterns–Chain of Responsibilities, Command, Interpreter, Iterator. Anti-patterns–Introduction and classification, Project Management, Architecture and Development anti-patterns (1 anti-patterns of each type)
	14 Hours
	Unit 4: OO Design Patterns & Anti-Patterns Structural Patterns–Adapter, Façade, Proxy and Fly weight Behavioral Patterns–Chain of Responsibilities, Command, Interpreter, Iterator. Anti-patterns–Introduction and classification, Project Management, Architecture and Development anti-patterns (1 anti-patterns of each type) 14 Hours
Laboratory	 Lab assignment on Use case diagram. Lab assignment on Class diagram. Lab assignment on Activity and State diagrams. Lab assignment on Java fundamentals. Lab assignment on Java Advanced features (Inheritance, Composition, etc.). Self-Learning Assignment on Java Serialization and Multithreading Hands-on Assignment on MVC Framework. Assignment on Design Patterns. Mini Project using MVC Framework and incorporating all learning of the course.
TextBook(s):	 "Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development", by Craig Larman, 3rd Edition, Pearson 2015. "Software Architecture Patterns" by Mark Richards,2nd Edition, OReilly 2022.
Reference Book(s):	 "Object-Oriented Modelling and Design with UML", Michael RBlaha and James RRumbaugh, 2nd Edition, Pearson 2007. "Design Patterns: Elements of Reusable Object-Oriented Software" by Erich Gamma, Richard Helm, RalphJohnson, and John Vlissides, 1st Edition, Pearson 2015. "Javathe Complete Reference", Herbert Schildt, McGraw-Hill, 11th Edition, 2018.
Course Outcome	 Construct static models, use cases, and class models, followed by analyzing the dynamics of the system using activity, sequence, state and process models. Depict the architecture of a software system by using component and deployment models. Use the concepts of classes and objects of object-oriented programming in Java to model a complex system. Use GRASP and SOLID principles in the design of software application and apply Creational software design patterns for variety of application scenarios. Apply Structural and Behavioural software design patterns for variety of application scenarios. Understand Anti- patterns.

Course Code	UE23CS341B	Course Title	Compiler Design				
Program	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	с
		Credit Assigned	4	0	0	4	4
Semester	6	Type of Course	Core				
Al Tools /Tools/Languag es	Lex/flex and YACC/Bison. Compiler Explorer + AI Explanation	Desirable Knowledge	Data Structures and its Application, Automata Formal Languages and Logic				
Prelude	Language design and implementatio program and the tools we use, chang approaches frequently. Any language that remains stagnant will be forgott the language design is a must for a C desirable knowledge of Data Structu	in is an active topic es constantly. We that doesn't cont ten. Hence knowle computer Science res and its Applica	opic in programming and will likely always be. How we Ve try new ideas and come up with better or alternative continue to adapt will fall into disuse, and any tool chain vledge of compilers in order to tweak these changes in the Engineer. This course requires the student to have a ications and Automata Formal Languages and Logic.				
Course Objectives:	 Introduce the major concept areas of language translation and compiler design Develop a greater understanding of the issues involved in programming language design and implementation. Provide practical programming skills necessary for constructing a compiler. Develop an awareness of the function and complexity of modern compilers. Provide an understanding of the importance and techniques of optimizing code from the Compiler's perspective. 				d npiler's		
Course Content s	Unit 1: Compilers: Introduction, Lexical Analysis, Top-down Parsers The Language Processing System, The Phases of a Compiler, The Grouping of Phases into Passes. Lexical Analysis: The Role of the Lexical Analyzer, Input Buffering, Specification of Tokens, Recognition of Tokens, Design of a Lexical Analyzer Generator. The role of the parser, Syntax Error Handling, and Error- Recovery Strategies. Top-down parsing: LL (1) Parser. 14 Hours						
	Unit 2: Syntax Analysis: Bottom-up Bottom-up parsing: Shift-Reduce Pa Syntax-directed definitions, Evaluation	Parsers, Syntax-Di rsing, viable prefix on orders for SDD'	x-Directed Translation refixes, CLR, LALR, Error recovery for Bottom-up parsers SDD's: S-attributed SDD, L-attributed SDD.				
	Unit 3: Implementation of Syntax-D	14 Hours Directed Translation Schemes and Intermediate Code			Hours		
	Generation Applications of Syntax-D flow control statements, Type Implementation of Postfix SDT's, SD Implementing L-Attributed SDD's: Bo Expressions, Three-Address Code–A Form, Control Flow Graph.	irected Translation Checking, Syntax T's with actions in ottom-Up Parsing. addresses and Ins	n-SDD for -directed side Prod Variants o tructions,	Syntax Trees Translation uctions, SDT of Syntax Tree , Quadruples,	, Expressions, Schemes – s for L- Attrib es–Directed A Triples, Indi	Basic Typ - Parser. uted Defin cyclic Gra rect Triple 14	es and Stack nitions. phs for es, SSA Hours

	Unit 4: Machine Independent Code Optimization, Code Generation and RunTime Environment Machine Independent Optimization: Different Optimizations, Optimization of Basic Blocks. Data Flow Analysis: Live-variable analysis, Next-use algorithm. Storage Organization, Different Allocation Strategies, Stack Allocation of space, Access to Non-local Data on the stack. Code Generation: Issues in the design of a code generator, the target language, addresses in the target code, static allocation, stack allocation, run-time addresses for names. A Simple Code generator - The Code generation algorithm, Register allocation problem (Graph coloring). 14 Hours
TextBook(s):	 "Compilers–Principles, Techniques and Tools", Alfred V.Aho, Monica S. Lam, Ravi Sethi, Jeffery D. Ullman, 2nd Edition, Pearson Education, 2009.
Reference Book(s):	 "Modern Compiler Design", Dick Grune, Keesvan Reeuwijk, Henri E.Bal, CerielJ.H. Jacobs, Koen Langendoen, 2nd Edition, 2012. AW Appel, J Palsberg, Modern Compiler Implementation in Java, Cambridge University Press, 2002.
Course Outcome	 Use the knowledge of patterns, tokens, and regex for solving the problems in the field of data mining. Analyze and design the semantic behavior of a compiler. Choose the appropriate compiler internal representation for different kinds of compiler tasks. Translate a source-level language into a low-level compiler internal representation. Optimize the performance of a program in terms of speed and space using new code optimization techniques.

Course Code	UE23AM342BA1	Course Title	Interdisciplinary Deep Learning on				
			Graph	Graph			
Program	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	C
		Credit Assigned	4	0	0	4	4
Semester	6	Type of Course	Elective -	- III			<u> </u>
AI Tools	Pytorch Geometric for Graph Neural	Desirable	Machine	Learning,			
/Tools/Languages	Networks.	Knowledge	Advance	d Foundati	ons for N	Machine	
		_	Learning				
Prelude	This advanced deep learning course deal	s with graph-based	deep learr	ning appro	aches fo	r non-Eu	clidean
	data. Graphs are ubiquitous today —in	social graphs, larg	e-scale bi	ological sy	/stems,	road net	tworks,
	polypharmacy, and user-item relations. H	lence, this course air	ns to equi	o the stude	ents with	modern	graph-
	based techniques in interdisciplinary app	dications. This course	e starts wi	th shallow	represer	ntation le	arning
	including special cases such as Deep gra	peep Learning-based	l graph re	epresentati	NN Dvp	iing aigo	ntnms,
	Hypergraph GNN. The course then deals	with GNN-based inte	ardiscinlina	arv annlicat	tions in c	lannic Giv Ietail	iv, allu
Course	Learn shallow representation lea	arning mechanisms.		ary applied			
Objectives:	 Learn deep neural methods of re 	epresentation learning	ng on grap	hs.			
-	 Learn GNN-based interdisciplina 	ry applications for d	ifferent do	mains.			
	 Learn GNN-based interdisciplina 	ry applications for m	nore doma	ins.			
Course	Unit 1: Neural Representation Learning	on Graph					
Contents:	Machine learning on Graph – Euclidean	vs. non-Euclidean d	data, Graphs of different types, Downstream				
	learning tasks on graph. Random walk-based embedding-DeepWalk, Node2Vec, Encoder-Decoder				ecoder		
	Applications Different relation pattern	s Knowledge Gra	h Embod	ding - Tri	ieuge Gr	apris, inc swiedge	Graph
	Completion Task Translational approache	es such as TransF Tra	insR KG Fr	nbedding r	nodel - S	coring fu	nction
	Loss function, Optimization algorithm, Ne	gative samples gene	ration. Va	nilla Graph	Neural	Vetwork-	-Neural
	message passing framework. Generalized	I neighborhood aggr	egation. G	eneralized	update i	methods	
						14	Hours
	Unit 2: Graph Neural Network						
	Graph Convolution Networks (GCN) and	d Multi-relational G	CN, Graph	ISAGE, Gra	ph Atte	ntion Ne	tworks
	(GAT), Graph Isomorphism Network(GII	N), Graph Transform	ner. Gen Dynamic	erating gra	aphs wit	th GNN-	Graph
	Heterogeneous GNN Hypergraph GNN	Efficiency issues in G	Dynamic SNN Mode	elling - Gra	spatial-i nh noolii	ng Annli	cations
	and loss functions. GNN laver optimizati	ion. Stacking GNN la	avers. GNN	N modeling	pin poon pipeline	e with di	fferent
	prediction heads, Graph augmentation	n, and Setting up	graph da	atasets for	r a lear	ming tas	sk.GNN
	Interpretability.						
						14	Hours
	Unit 3: Interdisciplinary Applications wi	th Graph Neural Net	work -1				
	Web data mining - Social Influence Pr	ediction, Recomme	nder Syste	em. Urban	data m	nining - 1	traffic
	prediction and anomaly detection. Cyber	rsecurity data mining	g – Malicio	bus accoun	t detecti	on, Fake	news
	Engineering – Software Mining and prog	-Question Answern ram analysis	ig, Graph	to seque	ice lean	iing. soi	lware
		eering – Software Mining and program analysis.				Hours	
	Unit 4: Interdisciplinary Applications wi	th Graph Neural Net	work -2				
	Computer vision – Visual QA, Image Clas	sification, Skeleton-	based acti	ion recogn	ition. Bi	ochemist	try and
	Healthcare – Protein-protein interaction	n, Disease prediction	n, Drug d	discovery.	Robus	t Graph	Neural
	Network - Graph Adversarial Attack, Gr	aph Adversarial Attack, Graph Adversarial Defenses. Graph Neural Network meets Large					
	Language Models.						
Text Book(s):	1. "Deep Learning on graphs" Yao	o Ma and Jiliang Tan	g. Cambrid	lge Univers	ity Press	. 2021	
	2: "Graph Neural Networks: Found	lations, Frontiers and	d Applicat	ions", Ling	fei Wu, I	, Peng Cui,	, et al.,
	Springer, 2023			, o			

Reference	1. Lecture Videos of Stanford/Fall 2024 Course CS224W: Machine Learning With Graphs
Book(s):	2: "Graph Representation Learning", William L Hamilton, Morgan and Clay pool Publishers, 2020.
Course	Downstream machine learning tasks on graphs using shallow embedding.
Outcome	 Solve a downstream machine-learning task using a graph neural network. Appreciate the architectures of interdisciplinary applications using GNN. Do a meaningful course project using Graph Neural Network-based models.

Course Code	UE23AM342BA2	Course Title	Large Language Models and Their Applications				
	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С
Program	. ,	week/	4	0	0	4	4
		Credit Assigned					
Semester	6	Type of Course	Elective -	· 111			
AI Tools	Pytorch Geometric for Graph Neural	Desirable	Machine	Learning.			
/Tools/Languages	Networks.	Knowledge					
Prelude	Large language models (LLMs) are neural	networks that can ge	enerate na	tural lang	uage text	based on	a given
	input, such as a word, a phrase, or a pror	npt. They are trained	on massiv	e amount	s of text of	data, such	as web
	pages, books, news articles, etc. Some	examples of LLIVIS	are GPI-3	, BERI, a	nd 15. Li	Livis nave	shown
	summarization question answering dia	logue image caption	sing tasks	anu bey	ona, suc n etc Tl	his course	Siduon,
	the fundamental concents architectures	techniques and an	nlications (generatio nf 11 Ms	n, etc. n		COVEIS
Course	Understand the principles and (hallenges of LLMs	plications	JI LLIVIS.			
Objectives:	 Learn the main architectures 	and components of	LLMs. suc	h as tran	sformers	. attentio	on. self-
	attention, etc.	· · · · ·	-,			,	,
	• Explore the methods and strate	gies for training, fine	e-tuning, ar	nd evaluat	ing LLMs	5.	
	 Apply LLMs to various natural la 	anguage understandi	ng and gen	eration ta	asks.		
	 Investigate the recent innovation 	ons and trends in LLN	1 research.				
Course	Unit 1: LLM Architectures and Compon	ents					
Contents:	What are LLMs and why are they imp	oortant? History and	l evolution	of LLMs	. Tokeni	zation: By	/te pair
	encoding, word piece encoding , senten	ce piece encoding. E	mbedding:	TF-IDF,wo	ord2vec,	SkipGram	, CBOW
	Transformers and self attention. Encode	r docodor modols an	d attentio	a Dro trai	ning Vic	ion transf	ormore
	BART BERT TS ROBERTS transformers			I. FIE-lia	iiiig, vis		Jiners.
						1	4 Hours
	Unit 2: NLP and Prompt Engineering					-	
	Natural language understanding tasks, s	uch as classification,	sentiment	analysis,	named e	ntity reco	gnition,
	translation, summarisation, paraphrasi	ng, Prompt structur	e. Open a	nd close	prompts	s, Soft an	d Hard
	prompts. Prompt Engineering techniq	ues, Zero/Few sho	t example	s, Chain/	Tree/Gra	aph of T	nought,
	Reasoning and Act.						
	Unit 3: RAG					1	4 Hours
	Naive Retrieval Augmented Generation	: Chunking, BM25 s	parse retrie	eval and	Colbert	dense ret	rieval,
	Indexing: FLAT, IVF, HNSW and PQ. Ver	ctor stores: pinecone	e, milvus, c	hroma DE	B etc, Mix	kture-of-e	xperts
	and retrieval-based LLMs. Advanced RA	G: Multihop, Query e	xpansion,	Cross Enc	oders, hy	brid sear	ch.
						1	4 Hours
	Unit 4: Fine Tuning, Agentic AI & Recen	t Innovations and Tr	rends				
	Full fine tuning, PEFT: LORA, QLORA, Pro	ompt tuning. Multi-t	ask and m	ulti-moda	I LLMs, N	/AMBA n	etwork:
	state space model, Agentic Workflows ,	Design Patterns in ag	gents, Ethic	s and sec	urity of L	LIVIS.	
						1	A Hours
Text Book(s)	1 Large Language Models: An Intro	duction By Oswald Ca	amnesato (Packt Oc	t 2024)	1	4110013
1 CAL DOOR(3).		Catcion by Oswald Co			. 20241.		
Reference	1. Hands-On Large Language Mod	els By Jay Alammar 8	k Maarten	Grootend	orst (O'R	eilly, Oct	2024).
Book(s):	2. How Large Language Models	Work By Edward Ra	ff, Drew F	arris & St	tella Bide	erman (M	anning,
	Summer 2025).						
	3. Large Language Model-Based Se	olutions By Shreyas S	Subramania	ın (Wiley,	May 202	24).	
	4. Engineering Large Language Mo	dels: A Practical Guic	le from Des	sign to De	ploymen	t By Lando	on Scott
	(Dec 2024)						

VERSITY	
	 Large Language Models Projects: Apply and Implement Strategies for Large Language Models By Pere Martra (Apress, Sep 2024).
Course Outcome	 Explain the basic concepts and terminology of LLMs. Compare and contrast different LLM architectures and variants. Implement and adapt LLMs using popular frameworks, such as HuggingFace, TensorFlow, PyTorch, etc. Solve various natural language processing problems using LLMs. Critically analyze the strengths and limitations of LLMs.

Course Code	UE23AM342BA3	Course Title	Expla	inable Al			
Program	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С
Fiografii		week/	4	4 0 0 4			4
	-	Credit Assigned					
Semester	6	Type of Course	Electiv	e – III			
AI Tools	Python Tools and Libraries.	Desirable	Machir	ne Learnin	g.		
/ TOOIS/ Languages	Understanding the logic and reasoning h	Knowledge	ing prod	ictions is a	ccontial in	makingh	ucinocc
Preiude	decisions healthcare predictions autom	otive and Aerosnace		d applications	ons Evolai	nable AI()	αsiness (ΔI) is a
	field of study in AI which includes set of	f methodologies that	t give the	e insight o	f making c	omplex n	nachine
	learning and deep learning model under	standable and Interp	retable.	Students o	obtain a ba	sic profici	iency in
	interpreting and explaining the decisions	of ML and AI systems	s, in a tra	nsparent a	nd underst	tandable	manner
	to humans. The course will cover vario	ous XAI techniques a	and algo	rithms, ind	cluding rul	e-based ı	models,
	feature importance analysis, model-agno	ostic approaches, and	a post-no	oc explana	tions.		
Course	• To understand the concept of	Explainable AI, its s	scope, a	nd its imp	act on var	rious app	lication
Objectives:	 domains To learn about XAI types and to 	chniques					
	 To learn the concept of interpret 	etable models, Globa	l and Loc	al model a	ignostic Me	ethods	
	To learn about various approact	hes for Neural Netwo	ork Inter	pretation.	0		
Course		and Interventels as	adal-				
Course Contents	Unit 1: Introduction to Interpretability	Scope Evaluations	oaeis of Intern	retability	Explanatio	ns Intern	retable
contents.	Models: Linear, Logistic, GLM and GAM, ,	Applying LIME Techr	niques, D	ecision Tre	e and Rule	Based M	ethods:
	Anchors counter factual Explanations, St	ructured Data Explai	ners				
	Unit 2: Global and Local model agnostic	- Methods				14	4 Hours
	Global: Introduction. Partial Depend	ence Plot(PDP).Accu	umulated	l Local F	ffects(ALF) plot.	Feature
	Interactions, Functional Decompositio	n, Permutation Fea	iture Im	portance,	Global S	urrogate.	Local:
	Individual Conditional Expectation, Log	cal Surrogate-LIME,	Counter	factual Ex	planations	, Scoped	Rules-
	Anchors, Shapley, SHAP (SHapley Additiv	e exPlanations).					
						1,	4 Hours
	Unit 3: Neural Network Interpretation					-	····ouro
	Learned Features, Pixel Attribution, D	etecting Concepts,	Adversar	ial Examp	les, Influe	ntial Inst	ances,
	Image Explainers: LIME for Images, Grac	I-CAM.					
						14	4 Hours
	Unit 4: Interpretability for unsupervise	d Learning and NLP					
	Clustering: Pre-model Explainability, Uns	supervised Learning f	or Cluste	ering, Sum	mary of Un	structure	d Data,
	Explainers K-means Clustering Explaine	er, NLP: Attention a	and Con	cept Base	d Explanat	tions, Exp	olaining
	Sentiment Analysis, Layer Integrated Gra	dients, Using Lime it	or sentin	ientai Ana	iysis.		
						14	4 Hours
Text Book(s):	1. Interpretable ML Book Christop	h Molnar Lethamand	d Rudin,2	2015.			_
	2. Interpretable Classifiers Using F	Rules and Bayesian A	nalysis La	akkaraju et	t. al., 2016.		
	5. Interpretable Decision Sets Wa 4 Counterfactual Explanations W	ithout Onening the R	lackBox	Karimiet a	2020		
	5. Algorithmic Recourse: From Co	unter factual Explana	ations to	Interventi	ons Mullen	bachet.a	I.,2018.
	6. Explainable Prediction of Medic	cal Codes from Clinica	al Text Ja	in and Wa	llace, 2019).	-
	7. Attention is not Explanation Co	overtet.al.,2021, Expl	ainingby	Removing	g: A Unified	d Framew	ork for
	Model Explanation.						

Reference	https://github.com/jphall663/awesome
links(s):	DeepFindr: Explainable AI explained! #1 Introd Kaggle notebook: https://www.kaggle.com/code/parulpandInterpretable MLbook: https://christophm.github.io/interpre InterpretML: https://interpret.ml/ ShapLibrary:https://github.com/slundberg/shap Partial Dependence Plots: •Partial Dependence Plots Interpret ml. Includes explainability •Partial Dependence Plots •Partial Dependence Plots •Partial Dependence Plots •Partial Dependence Plots •Partial Interpret ml. Includes
Course Outcome	 Ability to interpret models' results using XAI techniques. Ability to Understand Global vs Local Explanations and their applications. Ability to incorporate and build ML and DL models using widely used XAI techniques such as LIME, SHAP, Partial Dependence plot. Ability to select and correctly apply the interpretation method that is most suitable for machine learning models. Ability to analyse the explanations and find their limitations and biases.

Program B.Tech CSE[AI & ML] Hours per week/ week/ Credit L T P S C Semester 6 Type of Course Elective – III 4 0 0 4 4 Al Tools (Tools/Languag es Pytorch, SkLearn, Keras, Tensorflow Google cloud Vertex AI (end to-end ML platform). Desirable Knowledge Machine Learning, Advanced Foundations for Machine Learning advanced Foundations for Machine Learning base emerged as the technique converged as automation and robotics in If science. Today, data science and life science. have converged as automation and robotics in If science research generate enormous data, requiring data science to discover not-so-obvious relations. Machine Learning, sectifically beep Learning course will introduce deep learning applications in computer-aided medical diagnostics. Course Learn deep learning applications in Molecular Chemistry. Learn applications of generative models in drug discovery. Course Learn applications in Molecular Chemistry. Learn applications of generative models in drug discovery. Learn applications of generative models in drug discovery. Learn applications in genositics and Microscopy. Introduction to Computer-Aided Diagnostics and Microscopy. Case Study - Cell counting rem as ample, cell segmentation using U-net. Unit 2: Deep Learning remains biological samples for Microscopy. Case Study - Cell counting rem	Course Code	UE23AM342BA4	Course Title	Deep	Learning f	or Life Scie	ences	
Program week/ Credit Assigned u<	Brogram	B.Tech CSE(AI & ML)	Hours per	L T P S			S	С
Credit 4 0 0 4 4 Semester 5 Type of Course Elective – III Al Tools Protoch, Sklearn, Keras, Tensorflow Google (cloud Vertex AI (end to-end ML platform). Desirable Knowledge Machine Learning, Advanced Foundations for Machine Learning, Advanced Foundations for Machine Learning, has emerged as the technique of choic of finding relations this is a intereste enormous data, requiring data science to discover not-so-obvious relations. Machine Learning, has emerged as the technique of choic of finding relationships in a large volume of data in this domain. This course will introduce deep learning techniques in computer-aided diagnostics, microscopy, molecular chemistry, proteins, genomics, and drug discovery. Course Learn deep learning applications in proteins Genomics. Learn deep learning applications in proteins Genomics. Learn deep learning applications in proteins Genomics. Learn deep learning in Computer-Aided Diagnostics and Microscopy Introduction to Computer-Aided Diagnostics. Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, MH ison, and Histology, Learning modeles as Therapeutic. Case Study – Cell counting from a sample, cell segmentation using U-net. Unit 2: Deep Learning in Cheminformatics Introduction to Molecular Chemistry. Molecular Bords, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, ROKT, SMLES, Extended connectivity fingerprints (ECPP). SMARTS strings, and Molecular descriptors. Molecular Bords Contonet to predict solubility. 14 Hours <th>Program</th><th></th><th>week/</th><th></th><th></th><th></th><th></th><th></th>	Program		week/					
Semester 6 Type of Course Type of Course Elective – III AI Tools /Tools/Languag es Pytorch, Sktearn, Keras, Tensorflow Google /Tools/Languag Desirable /Tools/Languag Machine Learning, Advanced Foundations for Machine Learning, Advanced Foundations for Machine Learning, Advanced Foundations for Machine Learning, has emerged as the technique of choice for finding relationships in a large volume of data in this domain. This course will introduce deep learning techniques in computer-aided diagnostics, microscopy, molecular chemistry, proteins, genomics, and drug discovery. Course Objectives: Learn deep learning applications in molecular Chemistry. Learn deep learning applications in molecular Chemistry. Learn deep learning applications in proteins Genomics. Learn deep learning applications in proteins Genomics. Learn deep learning molecular Chemistry. Learn deep learning techniques is lectronic Health Record (EHR). Deep Radiology – X-ray scan, CT Scan, MII scan, and Histology, Learning models as Therapeutics. Case Study – Diabetic Retinopathy. Introduction to Microscopy. Modern optical Microscopy. Offraction Limit. Super-resolution Microscopy, Fluorescence Microscopy, Preparing biological samples for Microscopy. Case Study – Cell counting from a sample, cell segmentation using U-net. Introduction to Microscopy. Studem optical Microscopy. Case Study – Cell counting from a sample, cell segmentation using U-net. Introduction to Biophysical systems: Protein structure - homology modelling vs. physical modelling. protein binding. Biophysical solution structure - homology modelling vs. physical modelling. protein binding.			Credit	4	0	0	4	4
Semester o Upper Ocure Electivity = III AI Tools Prytoch, Sklearn, Keras, Tensorflow Google (Tools/Language es Desirable Knowledge Machine Learning, Advanced Foundations for Machine Learning Advanced Foundations for Machine Learning, Advanced Foundations for Machine Learning, Advanced Foundations for Machine Learning, Advanced Foundations for Machine Learning, Prelude Prelude This is an interdisciplinary introductory course for students aspiring for a future career in Life Science. Today, data science and life science have converged as automation and robotics in Ilfe science research generate enormous data, requiring data science to discover not so-obvious relations. Machine Learning, predicting, genomics, and drug discovery. Course	Compostor		Assigned	Flasting				
Al Tools (Tools/Language e) Pytorch, SkLearn, Keras, Tensorflow Google (doub Vertex AI (end to-end ML platform). Desirable Nowledge Machine Learning, Advanced Poundations for Machine Learning, for a future career in Life Science. Today, data science and life science have converged as automation and robotits in life science research generate enormous data, requiring data science to discover not-so-obvious relations. Machine Learning, parente course will introduce deep learning techniques in computer-aided diagnostics. Course Objectives: • Learn deep learning applications in computer-aided medical diagnostics. Course Course Course • Learn deep learning applications in porteins Genomics. • Learn deep learning applications in drug discovery. Course Contents: • Learn deep learning applications in proteins Genomics. • Learn deep learning applications in drug discovery. Course Contents: • Learn deep learning in proteins Genomics. • Learn applications in drug discovery. Introduction to Computer-Aided Diagnostics and Microscopy Introduction to Microscopy. Modern optical Microscopy, Oiffraction Lint, Super-resolution Microscopy, Fluorescence Microscopy. Preparing biological samples for Microscopy. Case Study – Cell counting from a sample, cell segmentation using U-net. 14 Hours Unit 2: Deep Learning for Computer-Aided Sciptures. Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, ROKIT, SMILES, Statende connectivity fingerprints (ECPP), SMART's strings, and Miclouar bonds, Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine leara	Semester	б	Type of Course	Elective	- 111			
Tools/Language cloud Vertex AI (end to-end ML platform): Knowledge Advanced Foundations for Machine Learning estimation and robotics in life science research generate enormous data, requiring data science to discover not-so-obvious relations. Machine Learning, specifically Deep Learning, has emerged as the technique of choice for finding relationships in a large volume of data in this domain. This course will introduce deep learning applications in computer-aided diagnostics, microscopy, molecular chemistry, proteins, genomics, and drug discovery. Course Unit 1: Deep Learning applications in motecular Chemistry. Learn deep learning applications in proteins Genomics. Course Unit 1: Deep Learning of Computer-Aided Diagnostics. Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, MR scan, and Histology. Learning medels an thergenutics. Case Study - Diabetic Retinopathy. Introduction to Koropy: Preparing biological samples for Microscopy. Internoduction to Microscopy: Preparing biological samples for Microscopy. Case Study - Cell counting from a sample, cell segmentation using U-net. 14 Hours Unit 2: Deep Learning in Cheminformatics 14 Hours 14 Hours 14 Hours Unit 3: Deep Learning in Cheminformatics 14 Hours 14 Hours Introduction to Miccular chemistry: Miccular bonds, Molecular Canformations, Chirality of molecular Scanting an and olicular for a machine learning task, RDKIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Miccular descriptors. Molecular Canformations, Chirality of molecular Scanting tasoplicular bonds, Molecular dataset, Graph Convolution Net	Al Tools	Pytorch Sklearn Keras Tensorflow Google	Desirable	Machin	e Learning	Ţ		
es Unit 2 Output: Unit 2: Deep Learning biological samples for Microscopy. Diffactilit Retinopathy. Introduction to Molecular chemistry: 14 Hours Unit 2: Deep Learning, and Histology. Elearning applications of generative and the composition of the servery. 14 Hours Course 0.11 Status and Histology. House and Hou	/Tools/Languag	cloud Vertex AI (end to-end ML platform).	Knowledge	Advance	ed Founda	,, ations for N	Aachine Lea	rning
Prelude This is an interdisciplinary introductory course for students aspiring for a future career in Life Science. Today, data science and life science have converged as automation and robotics in life science research generate enormous data, requiring data science to discover not so-obvious relations. Machine Learning, specifically Deep Learning, has emerged as the technique of choice for finding relationships in a large volume of data in this domain. This course will introduce deep learning applications in computer-aided diagnostics, microscopy, molecular chemistry, proteins, genomics, and drug discovery. Course Learn deep learning applications in computer-aided medical diagnostics. Objectives: Learn deep learning applications in computer-aided medical diagnostics. Course Unit 1: Deep Learning for Computer-Aided Diagnostics and Microscopy. Contents: Unit 1: Deep Learning technics: Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, MRI scan, and Histology, Learning models as Therapeutics. Case Study - Daletci Retinopathy. Introduction to Computer-aided Diagnostics and Microscopy. Case Study - Cell counting from a sample, cell segmentation using U-net. 14 Hours Unit 2: Deep Learning in Cheminformatics 14 Hours Introduction to Molecular chemistry: Molecular bonds, Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, RDKIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. Molecular dataset, Graph Convolution Network (GCN) - a graph representatio learning framework. Cases study - Training a GCN mode	es							
science and life science have converged as automation and robotics in life science research generate enormous data, requiring data science to discover not-so-obvious relations. Machine Learning, specifically Deep Learning, has emerged as the technique of choice for finding relationships in a large volume of data in this domain. This course will introduce deep learning applications in computer-aided diagnostics. Course Learn deep learning applications in computer-aided medical diagnostics. Learn deep learning applications in proteins Genomics. Learn deep learning applications and Microscopy Course Outint 1: Deep Learning for Computer-Aided Diagnostics: Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, MR is can, and Histology, Learning models as Therapeutics. Case Study - Diabetic Retinopathy. Introduction to Computer-aided Diagnostics: Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, MR is can, and Histology. Scan, MR is can, and Histology, Learning models as Therapeutics. Case Study - Cell counting from a sample, cell segmentation using U-net. 14 Hours Unit 2: Deep Learning in Cheminformatics Introduction to Molecular chemistry: Molecular bonds, Molecular graphs, Molecular Conformations, Chirality of molecular: Charastet.Graph Convolution Network (CGN) - a graph representation learning framework. Case study - Training a GCN model to predict go toticity fragerprints (ECPP), NAMTS strings, and Molecular descriptors. Molecular descriptors. Molecular claraster, predicting protein structure - homology modelling, yor shysical andeeling, protein sequence, predicting pro	Prelude	This is an interdisciplinary introductory course	e for students aspiri	ing for a fu	uture care	er in Life So	cience. Toda	ay, data
data, requiring data science to discover not-so-obvious relations. Machine Learning, specifically Deep Learning, has emerged as the technique of choice for finding relationships in a large volume of data in this domain. This course will introduce deep learning techniques in computer-aided diagnostics. Course Learn deep learning applications in computer-aided medical diagnostics. Learn deep learning applications in proteins Genomics. Learn deep learning applications in proteins Genomics. Learn applications of generative models in drug discovery. Course Unit 1: Deep Learning for Computer-Aided Diagnostics and Microscopy Introduction to Computer-Aided Diagnostics: Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, MRI scan, and Histology, Learning models as Therapeutics. Case Study - Diabetic Retinopathy. Introduction to Microscopy. Preparing biological samples for Microscopy. Case Study - Cell counting from a sample, cell segmentation using U-net. 14 Hours Unit 2: Deep Learning in Oheeularistry: Molecular bonds, Molecular Conformations, Chirality of molecular. Featurizing a molecule for a machine learning task, ROKT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset. Graph Convolution Network (GCN) - a graph representation learning framework. Case study - Training a CN model to pretict solubility. 14 Hours Unit 3: Deep Learning in Biophysical systems: Protein structure - protein sequence, predicting protein structure - homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein - grid featurization. Con greatics: G		science and life science have converged as a	utomation and rob	otics in lif	e science	research g	enerate end	ormous
has emerged as the technique of choice for finding relationships in a large volume of data in this domain. This course will introduce deep learning techniques in computer-aided diagnostics, microscopy, molecular chemistry, proteins, genomics, and drug discovery. Course Learn deep learning applications in computer-aided medical diagnostics. Learn deep learning applications in Molecular Chemistry. Learn deep learning applications in proteins Genomics. Learn applications of generative models in drug discovery. Course Unit 1: Deep Learning for Computer-Aided Diagnostics and Microscopy Introduction to Computer-aided Diagnostics: Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, RH scan, and Histology, Learning models as Therapeutics. Case Study - Diabetic Retinopathy. Introduction to Microscopy. Modern optical Microscopy, Diffraction Limit, Super-resolution Microscopy, Fluorescence Microscopy. Preparing biological samples for Microscopy. Case Study - Cell counting from a sample, cell segmentation using U-net. Unit 2: Deep Learning in Cheminformatics 14 Hours Unit 3: Deep Learning framework. Case study - Training a GCN model to predict solubility. 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Introduction to Biophysical systems: Protein structure - homology modelling vs. physical modelling, protein binding. Biophysical featurization of protein - grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding.		data, requiring data science to discover not-	so-obvious relation	s. Machir	ne Learnir	ig, specifica	ally Deep Le	arning,
course will introduce deep learning techniques in computer-aided diagnostics, microscopy, molecular chemistry, proteins, genomics, and drug discovery. Course Dijectives: Objectives: Learn deep learning applications in nother aided medical diagnostics. Unit 1: Deep Learning applications in proteins Genomics. Learn deep interning applications in proteins Genomics. Course Unit 1: Deep Learning to Computer-Aided Diagnostics: Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, MRI scan, and Histology, Learning models as Therapeutics. Case Study – Diabetic Retinopathy. Introduction to Microscopy. Modern optical Microscopy. Diffraction Limit, Super-resolution Microscopy, Fluorescence Microscopy. Preparing biological samples for Microscopy. Case Study – Cell counting from a sample, cell segmentation using U-net. 14 Hours Unit 2: Deep Learning in Cheminformatics Introduction to Microscopy. Molecular descriptors. Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, RDKIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset.Graph Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Unit 3: Deep Learning in Cheminformatics Introduction to Biophysical systems: Protein structure- protein sequence, predicting protein structure – homolegy modelling vs. physical modelling, protein binding. Biophysical fourt		has emerged as the technique of choice for	finding relationship	os in a lar	ge volume	e of data ir	n this doma	in. This
Course • Learn deep learning applications in computer-aided medical diagnostics. Objectives: • Learn deep learning applications in moteins Genomics. • Learn applications of generative models in drug discovery. Course Unit 1: Deep Learning for Computer-Aided Diagnostics and Microscopy Contents: Introduction to Computer-aided Diagnostics: Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, MRI scan, and Histology, Learning models as Therapeutics. Case Study - Diabetic Retinopathy. Introduction to Microscopy: Modern optical Microscopy, Diffraction Limit, Super-resolution Microscopy, Fluorescene Microscopy, Preparing biological samples for Microscopy. Case Study – Cell counting from a sample, cell segmentation using U-net. Unit 2: Deep Learning in Cheminformatics 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Unit 3: Deep Learning in Biophysical systems: Protein structure- protein sequence, predicting protein structure – homology modelling vs. physical modelling, protein binding. Biophysical featurization of protein – grid featurization case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. <t< th=""><th></th><th>course will introduce deep learning technique</th><th>es in computer-aide</th><th>ed diagno</th><th>stics, micr</th><th>oscopy, m</th><th>olecular che</th><th>emistry,</th></t<>		course will introduce deep learning technique	es in computer-aide	ed diagno	stics, micr	oscopy, m	olecular che	emistry,
Objectives: • Learn deep learning applications in Molecular Chemistry. • Learn deep learning applications in proteins Genomics. • Learn deep learning applications in proteins Genomics. • Course Unit 1: Deep Learning for Computer-Aided Diagnostics and Microscopy Introduction to Computer-aided Diagnostics: Electronic Health Record (ENR), Deep Radiology – X-ray scan, CT Scan, MR scan, and Histology, Learning models as Therapeutics. Case Study – Cell counting from a sample, cell segmentation using U-net. Unit 2: Deep Learning in Cheminformatics Introduction to Microscopy. Preparing biological samples for Microscopy. Case Study – Cell counting from a sample, cell segmentation using U-net. Unit 2: Deep Learning in Cheminformatics Introduction to Molecular chemistry: Molecular bonds, Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, RDKIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. Molecular due to predict solubility. Unit 3: Deep Learning in Biophysical systems and Genomics Introduction to Biophysical systems: Protein structure- protein sequence, predicting protein structure – homology modelling vs. physical modelling. Biophysical featurization of protein – grid featurization. Case study – Faturization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA interference. Case Study – A convolution all model for Transcription Factor		proteins, genomics, and drug discovery.	omputor sided me	dicaldiag	nactics			
Objectives. Learn deep learning applications in proteins Genomics. Learn applications of generative models in drug discovery. Course Unit 1: Deep Learning for Computer-Aided Diagnostics: Blectronic Health Record [EHR], Deep Radiology – X-ray scan, CT Scan, MRI scan, and Histology, Learning models as Therapeutics. Case Study – Diabetic Retinopathy. Introduction to Computer-aided Diagnostics: Blectronic Health Record [EHR], Deep Radiology – X-ray scan, CT Scan, MRI scan, and Histology, Learning models as Therapeutics. Case Study – Diabetic Retinopathy. Introduction to Microscopy: Modern optical Microscopy, Diffraction Linux Super-resolution Microscopy, Fluorescence Microscopy. Nodern optical Microscopy. Diffraction Linux Super-resolution Microscopy, Fluorescence Microscopy. Nodern optical Microscopy. Diffraction Linux Super-resolution Microscopy. Fluorescence Microscopy. Nodern optical Microscopy. Diffraction Linux Super-resolution Microscopy. Fluorescence Microscopy. Nodecular bonds, Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, RDKIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset. Graph Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. 14 Hours 14 Hours	Objectives:	 Learn deep learning applications in C Learn deep learning applications in C 	Adecular Chemistry	uicai uiag	nostics.			
Course Unit 1: Deep Learning for Computer-Aided Diagnostics and Microscopy Contents: Unit 1: Deep Learning for Computer-Aided Diagnostics and Microscopy Introduction to Computer-aided Diagnostics: Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, MRI scan, and Histology, Learning models as Therapeutics. Case Study - Diabetic Retinopathy. Introduction to Microscopy: Modern optical Microscopy, Diffraction Limit, Super-resolution Microscopy, Fluorescence Microscopy, Preparing biological samples for Microscopy. Case Study - Cell counting from a sample, cell segmentation using U-net. Unit 2: Deep Learning in Cheminformatics 14 Hours Unit 2: Deep Learning in Cheminformatics 14 Hours Unit 3: Deep Learning in Cheminformatics 14 Hours Unit 3: Deep Learning in Biophysical systems: Moleculer Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. Unit 3: Deep Learning in Biophysical systems: Protein structure – homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein – grid featurization. Case study – Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, Introduction to Greamics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding. Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in th	Objectives.	 Learn deep learning applications in r 	proteins Genomics	у.				
Course Contents: Unit 1: Deep Learning for Computer-Aided Diagnostics and Microscopy Introduction to Computer-aided Diagnostics: Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, MRI scan, and Histology, Learning models as Therapeutics. Case Study – Diabetic Retinopathy. Introduction to Microscopy: Modern optical Microscopy, Diffraction Limit, Super-resolution Microscopy, Fluorescence Microscopy, Preparing biological samples for Microscopy. Case Study – Cell counting from a sample, cell segmentation using U-net. 14 Hours Unit 2: Deep Learning in Cheminformatics 14 Hours Unit 3: Deep Learning in Cheminformatics 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Unit 3: Deep Learning in Biophysical systems: Protein structure – protein sequence, predicting protein structure – homology modelling vs. physical modelling, protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein – lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery – structure based vs. Ligand based Virtual screening. De Novo design by a		 Learn applications of generative mod 	dels in drug discove	ry.				
Contents: Introduction to Computer-aided Diagnostics: Electronic Health Record (EHR), Deep Radiology – X-ray scan, CT Scan, MRI scan, and Histology, Learning models as Therapeutics. Case Study – Diabetic Retinopathy. Introduction to Microscopy: Modern optical Microscopy, Diffraction Limit, Super-resolution Microscopy, Pluorescence Microscopy, Preparing biological samples for Microscopy. Case Study – Cell counting from a sample, cell segmentation using U-net. 14 Hours 14 Hours Unit 2: Deep Learning in Cheminformatics 14 Hours Introduction to Molecular chemistry: Molecular bonds, Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, RDKIT, SMILES, Extended Connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset.Graph Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Introduction to Biophysical systems: Protein structure- protein sequence, predicting protein structure – homology modelling vs. physical modelling, protein binding. Biophysical featurization of protein – grid featurization. Case study – A convolutional model for Transcription Factor binding. Introduction to Drug Discovery: A search problem in the intersection of chemical search space. Wirtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding. Introduction to Drug Discovery: A search problem in the intersection	Course	Unit 1: Deep Learning for Computer-Aided I	Diagnostics and Mic	croscopy				
Scan, MRI scan, and Histology, Learning models as Therapeutics. Case Study - Diabetic Retinopathy. Introduction to Microscopy: Modern optical Microscopy, Diffraction Limit, Super-resolution Microscopy, Fluorescnece Microscopy, Teaming biological samples for Microscopy. Case Study - Cell counting from a sample, cell segmentation using U-net. 14 Hours Unit 2: Deep Learning in Cheminformatics Introduction to Molecular chemistry: Molecular bonds, Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, RDKIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset.Graph Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. Unit 3: Deep Learning in Biophysical systems and Genomics Introduction to Biophysical systems: Protein structure - protein sequence, predicting protein structure - homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein - grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study - A convolutional model for Transcription Factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological sear	Contents:	Introduction to Computer-aided Diagnostics	: Electronic Health	Record (I	EHR), Dee	p Radiolog	gy – X-ray s	can, CT
Introduction to Microscopy: Modern optical Microscopy, Diffraction Limit, Super-resolution Microscopy, Fluorescence Microscopy, Preparing biological samples for Microscopy. Case Study – Cell counting from a sample, cell segmentation using U-net. 14 Hours Unit 2: Deep Learning in Cheminformatics 14 Hours Introduction to Molecular chemistry: Molecular bonds, Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, RDKIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset.Graph Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Introduction to Biophysical systems: Protein structure - protein sequence, predicting protein - grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. 11 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models 14 Hours Nowleds: Saliency Mapping approach. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. Refe		Scan, MRI scan, and Histology, Learning mode	els as Therapeutics.	Case Stud	dy - Diabe	tic Retinop	athy.	
Fluorescence Microscopy, Preparing biological samples for Microscopy. Case Study – Cell counting from a sample, cell segmentation using U-net. 14 Hours Unit 2: Deep Learning in Cheminformatics Introduction to Molecular chemistry: Molecular bonds, Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, RDKIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset.Graph Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics Introduction to Biophysical systems: Protein structure - protein sequence, predicting protein structure – homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery – structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – An interpretable deep model using saliency mapping. 14 Hours Course 1. Deep Learning for Genomics, Upendra Kumar		Introduction to Microscopy: Modern opti	cal Microscopy, D	oiffraction	Limit, S	uper-resol	ution Micro	oscopy,
Cell segmentation using U-net. 14 Hours Unit 2: Deep Learning in Cheminformatics Introduction to Molecular chemistry: Molecular bonds, Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, RDKIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset.Graph Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics Introduction to Biophysical systems: Protein structure- protein sequence, predicting protein structure – homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery – structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – An interpretabile deep model using saliency mapping. 14 Hours Course 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. 3. DeepChem : https://deepchem.io/ 14 Hours <th></th> <th>Fluorescence Microscopy, Preparing biologica</th> <th>I samples for Micro</th> <th>oscopy. Ca</th> <th>se Study -</th> <th>- Cell count</th> <th>ting from a s</th> <th>sample,</th>		Fluorescence Microscopy, Preparing biologica	I samples for Micro	oscopy. Ca	se Study -	- Cell count	ting from a s	sample,
Unit 2: Deep Learning in Cheminformatics Introduction to Molecular chemistry: Molecular bonds, Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, RDKIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset.Graph Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. 14 Hours 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Introduction to Biophysical systems: Protein structure- protein sequence, predicting protein structure – homology modelling vs. physical modelling, protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery – structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 20		cell segmentation using U-net.					4	4.1.1
Introduction to Molecular chemistry: Molecular bonds, Molecular graphs, Molecular Conformations, Chirality of molecules. Featurizing a molecule for a machine learning task, RDKIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset.Graph Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Introduction to Biophysical systems: Protein structure – protein sequence, predicting protein structure – homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models 114 Hours Unit 4: Deep Generative Model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretabile deep model using saliency mapping. 14 Hours Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. 2. Bioinformatics with Python Cookbook, Taigo Antao, Third Edition, Packt, 2022. 3. DeepChem : <a "="" deepchem.io="" href="https://deepchem.io/" https:="">https://deepchem.io/		Unit 2: Deen Learning in Cheminformatics					14	+ Hours
molecules. Featurizing a molecule for a machine learning task, RNIT, SMILES, Extended connectivity fingerprints (ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset.Graph Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics Introduction to Biophysical systems: Protein structure- protein sequence, predicting protein structure – homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. 14 Hours Reference Book(s): 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. 3. DeepChem : <u>https://deepchem.io/</u> Course Outcome Should be able to apply machine learning in Medicine using health record datasets. Should be able to use Deep Learning for applications in chem. informatics. Should be able to use		Introduction to Molecular chemistry: Molecu	lar bonds Molecul	ar granhs	Molecula	ar Conform	nations Chir	ality of
(ECFP), SMARTS strings, and Molecular descriptors. MoleculeNet dataset.Graph Convolution Network (GCN) - a graph representation learning framework. Case study – Training a GCN model to predict solubility. Unit 3: Deep Learning in Biophysical systems and Genomics Introduction to Biophysical systems: Protein structure- protein sequence, predicting protein structure – homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ 4. Bours Deep Learning for applications in chem. informatics. 4. Should be able to use Deep Learning for applications in		molecules. Featurizing a molecule for a mach	ine learning task. R	DKIT. SMI	LES. Exter	nded conne	ectivity finge	erprints
graph representation learning framework. Case study – Training a GCN model to predict solubility. 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics 14 Hours Introduction to Biophysical systems: Protein structure- protein sequence, predicting protein structure – homology modelling vs. physical modelling, protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. 14 Hours Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models 14 Hours Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ Course 9. Should be able to use Deep Learning for applications in chem. informatics. 9. Should be able to use Deep Learning for applications in proteins and genomics.		(ECFP), SMARTS strings, and Molecular desci	iptors. MoleculeNe	et dataset	.Graph Co	onvolution	Network (G	iCN) - a
Mathematical State 14 Hours Unit 3: Deep Learning in Biophysical systems and Genomics Introduction to Biophysical systems: Protein structure- protein sequence, predicting protein structure – homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery – structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ 4. Should be able to use Deep Learning for applications in chem. informatics. 6. Should be able to use Deep Learning for applications in proteins and genomics. 5. Should be able to use Deep Learning for applications in proteins and genomics.		graph representation learning framework. Ca	se study – Training	a GCN mo	odel to pre	edict solub	ility.	
Unit 3: Deep Learning in Biophysical systems and Genomics Introduction to Biophysical systems: Protein structure- protein sequence, predicting protein structure – homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – An interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ 5. Should be able to use Deep Learning for applications in chem. informatics. 6. Should be able to use Deep Learning for applications in proteins and genomics. 5. Should be able to use Deep Learning for applications in proteins and genomics.							14 H	lours
Introduction to Biophysical systems: Protein structure- protein sequence, predicting protein structure – homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models 14 Hours Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ Course 9. Should be able to use Deep Learning for applications in chem. informatics. 9. Should be able to use Deep Learning for applications in proteins and genomics. 9. Should be able to use Deep Learning for applications in proteins and genomics.		Unit 3: Deep Learning in Biophysical system	s and Genomics					
homology modelling vs. physical modelling. protein binding. Biophysical featurization of protein – grid featurization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models 14 Hours Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ 4. Should be able to use Deep Learning for applications in chem. informatics. 4. Should be able to use Deep Learning for applications in chem. 5. Should be able to use Generative models for applications in proteins and genomics. 5. Should be able to use Deep Learning for applications in chem. 5. Should be able to use Generative models for de nove decime		Introduction to Biophysical systems: Prote	in structure- prot	ein seque	ence, pre	dicting pro	otein struct	ure –
Teaturization. Case study - Featurization using PDBBind dataset, building a neural network for protein-lig and binding. Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Interference. Case Study – A convolutional model for Transcription Factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ 4. Should be able to apply machine learning in Medicine using health record datasets. Outcome Should be able to use Deep Learning for applications in chem. informatics. 4. Should be able to use Deep Learning for applications in proteins and genomics. 5. Should be able to use Deep Learning for applications in proteins and genomics.		homology modelling vs. physical modellin	g. protein binding	. Biophys	sical featu	urization o	of protein -	- grid
Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding, RNA Introduction to Genomics: Genetics vs. Genomics, DNA, RNA, and Protein. Transcription factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery -structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ 9. Should be able to apply machine learning in Medicine using health record datasets. 0utcome 9. Should be able to use Deep Learning for applications in chem. informatics. 9. Should be able to use Deep Learning for applications in proteins and genomics. 9. Should be able to use Deep Learning for applications in proteins and genomics.		hinding	ng PDBBING dataset	t, building	; a neurai	network to	or protein-li	ig and
Introduction to Genomics, Generics vs. Genomics, DNA, NNA, and Protein. Transcription factor binding. 14 Hours Interference. Case Study – A convolutional model for Transcription Factor binding. 14 Hours Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models 14 Hours Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ Course 0utcome Outcome Should be able to use Deep Learning for applications in chem. informatics. Should be able to use Deep Learning for applications in proteins and genomics. Should be able to use Deep Learning for applications in proteins and genomics.		Introduction to Conomics: Constics vs. Con	omics DNA PNA	and Brote	in Trans	cription for	tor hinding	
Interference 14 Hours Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. Course 0. Should be able to use Deep Learning for applications in chem. informatics. Outcome 5. Should be able to use Deep Learning for applications in proteins and genomics.		Interference Case Study – A convolutional m	odel for Transcripti	ion Factor	hinding		tor binding	, 11174
Unit 4: Deep Generative Models for Drug Discovery and the Interpretability of Deep Models Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – an interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ Course 0utcome 9. Should be able to use Deep Learning for applications in chem. informatics. 9. Should be able to use Deep Learning for applications in proteins and genomics. 9. Should be able to use Deep Learning for applications in proteins and genomics.					Sinaing.		14	4 Hours
Introduction to Drug Discovery: A search problem in the intersection of chemical search space and biological search space. Virtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ Course 0utcome Should be able to use Deep Learning for applications in chem. informatics. Should be able to use Deep Learning for applications in proteins and genomics. Should be able to use generative models for de nove design		Unit 4: Deep Generative Models for Drug Di	scovery and the Ini	terpretab	ility of De	ep Models	;	
search space. Virtual Screening to optimize Drug discovery –structure based vs. Ligand based Virtual screening. De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ Course 0utcome Should be able to use Deep Learning for applications in chem. informatics. Should be able to use Deep Learning for applications in proteins and genomics. Should be able to use Deep Learning for applications in proteins and genomics.		Introduction to Drug Discovery: A search pr	oblem in the inter	section of	f chemica	l search sp	ace and bio	ological
De Novo design by a Generative model. Case study – using VAE to create molecules. Interpretation of Deep Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. 14 Hours Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. 14 Hours Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 10 DeepChem : https://deepchem.io/ Course 0 Should be able to apply machine learning in Medicine using health record datasets. Outcome Should be able to use Deep Learning for applications in chem. informatics. Should be able to use Deep Learning for applications in proteins and genomics.		search space. Virtual Screening to optimize I	Drug discovery –str	ucture ba	sed vs. Lig	gand based	l Virtual scr	eening.
Models: Saliency Mapping approach. Case study – An interpretable deep model using saliency mapping. 14 Hours Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ Course • Should be able to apply machine learning in Medicine using health record datasets. Outcome • Should be able to use Deep Learning for applications in chem. informatics. • Should be able to use Deep Learning for applications in proteins and genomics. • Should be able to use Deep Learning for applications in proteins and genomics.		De Novo design by a Generative model. Ca	se study – using V	AE to cre	ate moleo	cules. Inter	rpretation c	of Deep
Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ Course • Should be able to apply machine learning in Medicine using health record datasets. Outcome • Should be able to use Deep Learning for applications in chem. informatics. • Should be able to use Deep Learning for applications in proteins and genomics. • Should be able to use Deep Learning for applications in proteins and genomics.		Models: Saliency Mapping approach. Case stu	ıdy – An interpretal	ble deep r	nodel usir	ng saliency	mapping.	
Reference 1. Deep Learning for Genomics, Upendra Kumar Devisetty, Packt, 2022. Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ Course • Should be able to apply machine learning in Medicine using health record datasets. Outcome • Should be able to use Deep Learning for applications in chem. informatics. • Should be able to use Deep Learning for applications in proteins and genomics. • Should be able to use Deep Learning for applications in proteins and genomics.							14	+ Hours
Book(s): 2. Bioinformatics with Python Cookbook, Tiago Antao, Third Edition, Packt, 2022. 3. DeepChem : https://deepchem.io/ Course • Should be able to apply machine learning in Medicine using health record datasets. Outcome • Should be able to use Deep Learning for applications in chem. informatics. • Should be able to use Deep Learning for applications in proteins and genomics. • Should be able to use models for de povo decign	Reference	1. Deep Learning for Genomics, Upend	ra Kumar Devisetty	, Packt, 20	022.			
3. DeepChem : https://deepchem.io/ Course • Should be able to apply machine learning in Medicine using health record datasets. Outcome • Should be able to use Deep Learning for applications in chem. informatics. • Should be able to use Deep Learning for applications in proteins and genomics. • Should be able to use generative models for de nove decign	Book(s):	2. Bioinformatics with Python Cookboo	ok, Tiago Antao, Thi	rd Edition	, Packt, 20	022.		
Course • Should be able to apply machine learning in Medicine using health record datasets. Outcome • Should be able to use Deep Learning for applications in chem. informatics. • Should be able to use Deep Learning for applications in proteins and genomics. • Should be able to use generative models for de nove decign.		3. DeepChem : <u>https://deepchem.io/</u>						
Outcome Should be able to use Deep Learning for applications in chem. informatics. Should be able to use Deep Learning for applications in proteins and genomics. Should be able to use generative models for de nove design	Course	Should be able to apply machine lea	rning in Medicine u	sing healt	h record o	datasets.		
 Should be able to use Deep Learning for applications in proteins and genomics. Should be able to use generative models for de novo design. 	Outcome	 Should be able to use Deep Learning Should be able to use Deep Learning 	tor applications in	cnem. inf	ormatics.	ning		
		 Should be able to use generative mo 	nor applications in Idels for de novo de	proteins a sign	and genor	mes.		

Course Code	UE23AM342BA5	Course Title	Intellig	ent Syste	ms with	Knowledg	ge Graphs		
Program	B.Tech CSE(AI & ML)	Hours per	L T P S				С		
		week/ Credit Assigned	4	0	0	4	4		
Semester	6	Type of Course	Elective	- 111					
AI Tools	Python, Neo4J, Networkx, NLP Libraries.	Desirable	Machine	Learning	,				
/Tools/Languag es		Knowledge	Advance	d Founda	tions for	Machine	Learning		
Prelude Course Objectives:	 Intelligence is the ability to acquire and apply knowledge is important in situations impact incorporating contextualized knowledge into where knowledge graphs are pervasive. This c in a graph format, and intelligent reasoning s data scientist in healthcare and life science. Introduce the students to concepts corpus. Introduce the students to technique Introduce the students to the knowledge 	o knowledge. Develo ing human life. Kno o intelligent systems ourse deals with kno systems. This course of Intelligent system s of knowledge grap edge graph represer	ping intelligent systems incorporating contextual wledge Graphs represent a core abstraction for s. Life Science and Healthcare are two domains wledge acquisition, representation of knowledge equips students aspiring to pursue a career as a ms, Knowledge graphs, and building from a text oh-building from text data.						
	 Introduce the students to Graph RAG 	G using knowledge g	raphs.						
Course	Unit 1: Introduction to Intelligent Systems	and Knowledge Gr	aphs, Buil	ding Knov	wledge G	araph Usi	ng Natural		
Contents:	Introduction to Intelligent Systems: What is an of Intelligent Systems. Building an Intellig Reasoning, Role of knowledge Graphs. Applie discussion. Introduction to knowledge graphs (LPG).Constructing a Knowledge Graph using Relation extraction, External data enrichme Science and Healthcare specific text embedo Network using NLP techniques: Unsupervis keywords, and topic identification. LLM trai GatorTron, BioGPT, Med-PaLM. KG Building I Unit 2: Knowledge Graphs using Neo4J, Crea Introduction to Neo4J – Cypher, APOC, and Neo4J, querying the data, and reasoning over Biomedical Domain – multi-omic, pharmace Graph to capture microRNA (mRNA) and dise Unit 3: Deriving Implicit Information on Kno Machine Learning tasks on KG – node class	stems: What is an intelligent system? Autonomous vs. Advisor systems, characteristics lding an Intelligent System - knowledge acquisition, knowledge representation, ge Graphs. Applications of knowledge graphs in Healthcare and Life Sciences – paper nowledge graphs: Resource Description Framework (RDF) and Labeled Property Graph edge Graph using NLP techniques: named entity recognition, coreference resolution, I data enrichment, and Implementation of an information extraction pipeline. Life cific text embedding – BioBERT, PubMedBERT, ClinicalBERT. Constructing a Semantic jues: Unsupervised keyword extraction, keyword co-occurrence graphs, clustering ication. LLM trained on Biological and Healthcare data - LLaMA-Med, Vicuna-Med, LM. KG Building by LLM - Traditional NLP vs. LLM. 14 Hours Jsing Neo4J, Creating Knowledge Graphs from Ontologies oher, APOC, and GDS plugins. Knowledge graph building by ontology ingestion with d reasoning over the knowledge graph. Complex knowledge graph examples from the -omic, pharmaceutical, and clinical applications. Case Study -Building a Knowledge (mRNA) and disease association. 14 Hours							
	Translational embedding algorithms - TransE, based algorithm - Node2Vec, Encoder-dec framework, generalized aggregation and up Graph Mining - protein-protein interaction, p Unit 4: Knowledge Graph and Large Langua Why Graph RAG – Limitations of LLM, Over source. RAG overview – Retriever, Generato Query rewriter, Retriever agent, Retriever rou	TransR, DistMult. Ki coder perspective. (odate.Suggested Cas protein-drug interact ge Model - Graph R coming limitations r, RAG using vector iter, Answer critics. F	Graph Convolution network–message passing ise studies–friend recommendation. Knowledge ction, drug application prediction. Retrieval Augmented Generation is by RAG, Knowledge Graph as the external data or similarity search. Introduction to Agentic RAG–						
	and Weaknesses. Hybrid approach with Kn	owledge Graph and	l Vector D	Database.	RAG app	olication e	evaluation. 14 Hours		

Text Book(s):	 "Graph-Powered Machine Learning: Use Graphs and Deep Learning to Solve Complex Problems", Alessandro Negro, Manning, 2021.
	 "Knowledge Graphs: Fundamentals, Techniques, and Applications", Dieter Fensel, Umutcan Şimşek, Kevin Angele, et al., Publisher: Springer (2020).
	3. "Knowledge Graphs: Fundamentals, Techniques, and Applications", Mayank Kejriwal, Craig A. Knoblock, and Pedro Szekely, MIT Press, 2021.
Reference	1. "Building Knowledge Graphs: A Practitioner's Guide", Jesus Barrasa & Jim Webber, OREILLY, 2025.
Book(s):	 "Building AI Agents with LLMs, RAG, and Knowledge Graphs: A Practical Guide to Autonomous and Modern AI Agents", Salvatore Raieli, Gabriele Luculano, Packt, 2023.
	 "Healthcare Data Analytics", Chandan K Reddy and Charu C. Agarwal, Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, 2020.
Suggested	1. Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities- Jiaoyan
Papers:	Chen et al., 2023, arXiv.
	 A Review on Knowledge Graphs for Healthcare: Resources, Applications, and Promises, Hejie Cui et al., arXiv, 2025.
	 Patient-Centric Knowledge Graphs: A Survey of Current Methods, Challenges, and Applications, Hasan S. et al., arXiv, 2024.
	4. Cost Effective Digital Prescriptions using Pharmaceutical Knowledge Graphs, Aryan Rathod et al., Asian Journal Of Research in Computer Science, 2023.
	5. Knowledge Graphs in Pharma covigilance: A Scoping Review, Manfred Hauben et al. Clinical Therapeutics (Elsevier), 2024.
	6. Knowledge-Guided Learning Methods for Integrative Analysis of Multi-Omics Data, Wenrui Li et al., Computational and Structural Biotechnology Journal (Elsevier), 2024.
Course	Ability to build a Knowledge Graph from a text corpus.
Outcome	• Ability to build a Knowledge Graph using Neo4J from domain-specific ontologies.
	• Ability to find implicit information from KG using the shallow and deep Knowledge Graph embeddings.

Course Code	UE23CS342BA5	Course Title	BlockChain						
Program	B.Tech CSE(AI & ML)	Hours per	L T P S C						
		Assigned	4	0	0	4	4		
Semester	6	Type of Course	Elective -	111					
Al Tools /Tools/Languages	Solidity, Ganache, Meta mask. RemixID, Ganache tool.	Desirable Knowledge	Data Stru	ictures for	coding purp	ose			
Prelude	This course offers a comprehensive understanding of Blockchain technology, covering its foundational concepts, data integrity, cryptographic techniques, and network structures. Students will explore key blockchain models, consensus algorithms, smart contracts, and second-generation applications like DApps and DAOs. Through hands-on demonstrations, including wallet creation and transactions, learners gain practical skills in working with platforms like Etherscan and Hyperledger Fabric. The course also addresses security challenges and real-world use cases across industries, preparing students for research and professional applications in blockchain.								
Course Objectives:	 To provide foundational knowledge of blockchain technology, including its architecture, data integrity principles, and key components such as nodes, tokens, and ledgers. To explore various consensus algorithms and their roles in achieving distributed agreement in blockchain networks. To introduce smart contracts and decentralized applications (DApps) using programming tools like Solidity and platforms such as Ethereum. To examine blockchain security, vulnerabilities, and real-world use cases in sectors like finance, supply chain, and public administration. 								
Course Contents	Unit 1: Introduction and Da Key Blockchain Concepts, No Blockchain, Permissioned I Blockchain Construction ste cryptography, Digital signatu Case study: Bitcoin Blockch	taflow and Integr odes, Cryptocurre Blockchain mode eps, Demonstratio irres, Hash functior nain Network, Cre	ity ncy, tokens I, Permissi on of ethe ns, SHA-256 eation of r	s, Public Le ion-less B r scan and 5, Patterns netamask	dger, Peer t lockchain m d Goerli/Sep of hashing, H wallets and	o peer Netw nodel, Demo nolia ethersc Hash Pointer, performing	ork, Types of onstration of an. Types of , Merkle tree. transaction. 14 Hours		
	Unit 2:The structure of the	network: consens	us algorith	ım					
	Case study: Bitcoin Blockch Introduction to distributed c Proof of Stake, Proof of Auth RAFT, PAXOS, Byzantine Fau Creating and deploying smar	ain Network, Cre onsensus: What, nority, Proof of Ela It Tolerance Syste t contracts.	eation of n why, Challe apsed Time em, PBFT. S	netamask enges, Proo e, Proof of Smart cont	wallets and of of Work, F Scope, Proo racts: origin	performing Proof of Stak f of Space, P s and how th	transaction. e, Delegated roof of Burn, ney function, 14 Hours		
	Unit 3: Second generation a Solidity- Variable, Functions, internal, external, modifiers, functions, Withdrawal patter Decentralized applications, D Principal agent dilemma, cor Unit 4:Blockchain Security a Hyperledger Fabric: Blockch	pplications of Blo Arrays/Strings, e , view, pure, fallb rn, Restricted Acco Dapps construction nponents, The DA nd use cases	:kchain technology num/structs, mapping, function visibility - public, private, ack, overloading, in-built mathematical and cryptography ess, ether units. n, Decentralized Autonomous Organizations (DAOs)-Need, O Story, Legality of DAPPs and DAOs. 14 Hours BaaS), Architecture and core components, Hyperledger						
	fabric model, Creation of a si	imple DAPP. Block	chain vuln	erabilities,	Smart contr	act vulnerab	ilities,		

UNIVE	PETTV	Blockchain based DNS security platform, deploying blockchain based DDOS protection. Use cases: Public Sector, Finance, Supply Chain. Research Aspects in Blockchain. 14 Hours
	Text Book(s):	 Introduction to Blockchain Technology, Tiana Laurence,1st edition, Van Haren Publishing,2019. Blockchain Technology from Theory to Practice, SudeepTanwar,1st edition, Springer,2022.
	Reference Book(s):	 Hands-On Cybersecurity with Blockchain: Implement DDoS protection, PKI-based identity, 2FA, and DNS security using Blockchain, Rajneesh Gupta, 1st edition, 2018. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Narayanan, Bonneau, Felten, Miller and Goldfeder, Princeton University Press, 2016. Drescher, Daniel. Blockchain Basics: A Non-Technical Introduction in 25 Steps. Germany: Apress, 2017.
	Course Outcome	 Understand and explain the structure, types, and functioning of blockchain systems and cryptographic techniques used for data integrity. Analyze and compare different consensus mechanisms and their applicability in distributed networks. Design, code, and deploy smart contracts and DApps using Ethereum-based tools like Metamask and Solidity. Evaluate blockchain's impact and applicability in various industries, along with identifying and mitigating potential security vulnerabilities.

Course Code	UE23CS342BA6	Course Title	Digital Forensics and Incident Response					
Program	B.Tech CSE(AI & ML)	Hours per	L T P S			s	с	
		Credit Assigned	4	0	0	4	4	
Semester	6	Type of Course	Elective -	- 111				
Al Tools /Tools/Languages	Open-source tools on Forensics. Cellebrite, Deepfake Detection Tools	Desirable Knowledge	Machine	Learning				
Prelude	Digital Forensics is the core set and uncover critical intelligence protect, analyze, and report dig practical exercises. The conter corresponding outcomes	of principles and pr e. This course provi ital confirmations t nt is organized int	of principles and processes necessary to produce usable digital evidence This course provides a deep understanding of techniques to gather, tal confirmations through a combination of theoretical foundation and t is organized into four units, each with a focused objective and					
Course Objectives:	 Introduce the history, evolution, basic principles, challenges, and incident response techniques in digital forensics. Develop expertise in Windows file systems, including file structure analysis, registry examination, and related forensic recovery tools. Build foundational skills in Linux and macOS systems while integrating network forensics and browser-based analysis. Equip students with specialized knowledge in email forensics, mobile device investigations, antiforensics techniques, and professional report writing. 							
Course Contents	Unit 1: Introduction to Digital For Foundations of Digital Forensics forensic readiness, life cycle, and international standards Incident Response: Attack lifecyd Team and drafting an Incident Re- Investigations Triad Evidence Acquisition and Analys vs. unallocated space, and persi Initial responder tasks: search an Labs & Activities: • Activity1:Understanding • Lab1: Acquiring digital ev Unit 2: Windows Forensics-File s Windows File Systems: Overview and metadata, Techniques for tin Windows Registry Analysis: Key recycle bin, metadata, thumbna copies, Methods for recovering d Labs & Activities: • Activity2: Case study us • Lab3: Data recovery and	 duction to Digital Forensics and Incident Response of Digital Forensics: Introduction to forensic science and digital forensics, Goals, categories, liness, life cycle, and challenges, Role of the examiner; types of investigations; importance of standards ponse: Attack lifecycle and introduction to incident response, Building an Incident Response afting an Incident Response Plan (IRP), Forensic tools and methodologies for initial response, s Triad quisition and Analysis: Types of digital evidence (HDD, SSD, RAM), Data recovery, allocated ed space, and persistence (page/swap files),Major Concepts, Essential Technical Concepts ider tasks: search and seizure, documentation, packaging, and transporting evidence ities: vity1:Understanding and familiarization with Digital Forensic 1: Acquiring digital evidence (HDD/SSD and RAM) with open-source tools. 2:Analysing digital evidence(HDD/SSD and RAM) with open-source tools. 2:Analysing digital evidence(HDD/SSD and RAM) with open-source tools. 14 Hours ows Forensics-File systems and Registry Analysis e Systems: Overview of FAT and NTFS file systems, Examination of file allocation structures a, Techniques for timeline analysis and file recovery gistry Analysis: Key artifacts: Deleted data, hibernation file (Hiberfile.sys), print spooling, metadata, thumbnail cache, Most Recently Used (MRU) lists, restore points, and shadow tools for recovering deleted registry keys and performing registry forensics. ities: vity2: Case study using tools like Autopsy for practical Windows forensics. 3: Data recovery and forensic analysis using EXIFTool. 						

Lab4: Examination of the Windows Registry with REGEDIT and open-source forensic tools.

14 Hours Unit 3: Linux, macOS, Network, and Browser Forensics Linux Forensics: Linux file systems (Ext2/Ext3), structure layers (file, metadata, data unit), and artifacts, Concepts such as deleted data recovery, logical volume management, boot processes, and principles of file carving macOS Forensics: Exploration of OS X file system artifacts, including HFS+ structures and OS X system logs Network Forensics: Fundamentals of networking and types of networks, Techniques for securing network infrastructures, analyzing network evidence, and applying forensic science to networks, Tools and processes for the seizure and analysis of networking devices Browser Forensics: Overview of web browsers (IE, Firefox, Chrome), Forensic analysis of browser artifacts and investigation tools. Labs & Activities: Activity 3: Practical session on understanding Linux artifacts using both CLI and GUI tools. Lab 5: Analysis of PCAP files and network forensic investigations. • Lab 6: Browser forensic investigations using open-source tools. • 14 Hours Unit 4: Email, Mobile Forensics, Anti-Forensics, and Report Writing Email Forensics: Examination of email communications, protocols, and header analysis, Techniques for recovering and analyzing email evidence. Mobile Device Forensics: Architecture, boot processes, and the forensic significance of cellular network data, Procedures related to SIM filesystems, device locks, rooting, and jail breaking Methods for evidence acquisition and challenges associated with mobile devices. Anti-Forensics: Overview and classification of anti-forensics techniques, Practices including data wiping, shredding, obfuscation, encryption, and data hiding. Report Writing: Preparing and structuring forensic reports best practices for report design, documentation, legal acceptance, and presenting digital evidence. Labs & Activities: Lab 7: Email forensics using open-source tools. • Lab 8: Demonstration of mobile forensics techniques. Activity 4: Collaborative report writing exercise and peer review. 14 Hours TextBook(s): 1. "The basics of digital forensics: the primer for getting started in digital forensics", Sammons, J.Elsevier, 2012. 2. "Digital Forensics Basics: A Practical Guide Using Windows OS", Hassan, N.A. Apress 2019. 3. "Practical Cyber Forensics- An Incident-Based Approach to Forensic Investigations", by Niranjan Reddy, A Press, 2019. 4:"Introductory Computer Forensics – A Hands-on practical Approach", by XiaodongLin, Springer, 2018. Reference 1: "Guide to Computer Forensics and Investigations", Bill Nelson, Amelia Phillips and Christopher Steuart, Book(s): Course Technology, Cengage Learning, 2010. 2: "Digital forensics with open-source tools", Altheide, C., & Carvey, H. Elsevier, 2011. 3:"Digital Forensics Workbook-Hands-on Activities in Digital Forensics", Michael K Robinson, CreateSpace

Independent Publishing Platform, 2015.

ATAEKS		
	Course Outcome	 Students will understand the fundamental principles of digital forensics, be familiar with its historical evolution, and perform initial incident response and evidence acquisition. Students will be able to analyze Windows file systems and registry artifacts effectively, perform timeline analyses, and recover deleted data. Students will acquire and analyze forensic data from Linux and macOS environments and demonstrate proficiency in network and browser forensics. Students will conduct mobile device and email investigations using proper tools, recognize antiforensics practices, and compile legally sound forensic reports.

Course Code	UE23CS342BA7	Course Title	Digital Twins					
Program	B.Tech CSE(AI & ML)	Hours per week/	L T P S		s	с		
		Crean Assigned	4	0	0	4	4	
Semester	6	Type of Course	Elective -	111				
Al Tools /Tools/Language s	C/C++/JAVA/Python using OpenGL.	Desirable Knowledge	Data Stru Design ar	ictures, nd Analysis o	f Algorithm	IS		
Prelude	Digital Twins are revolutionizing how we design, monitor, and optimize complex systems by creating dynamic virtual replicas of physical entities. This course introduces the foundational concepts, modeling techniques, and simulation strategies needed to build and analyze Digital Twins across domains such as healthcare, manufacturing, and transportation. Students will gain hands-on experience with tools like Unity, Blender, and OpenGL, while also exploring critical topicslike3Dview synthesis and cybersecurity. By the end of the course, students will be equipped to conceptualize, build, and secure intelligent Digital Twin systems.							
Course Objectives:	 Develop fundamental understanding of Digital Twins and its architecture. With help of case studies provide a structured way to conceptualize any Digital Twin. Develop understanding on various techniques for structural twinning and 3D view Synthesis. To build skill in modelling-based system engineering, focusing on discrete event systems. Collaborate with peers on practical projects to gain hands-on experience in developing intelligent systems. Develop understanding about secure designs and privacy concerns in the context of Digital twin. 							
Course Contents	Unit 1: Digital Twin Essentials The Big Picture of Digital Twins, History of the Digital Twin, Origin of the Digital Twin concept, Digital Twin and Product Life cycle Relationship, Types of Digital Twin: Discrete Vs Composite, Product versus facility, Types of Digital Twin: Simulation versus operational, Analytics versus physics-based, Characteristics of a Digital Twin, Digital Twin Architecture, Industrial Digital Twin applications, Examples of mock, functional, and executable twins, Data Driven Modelling, Physics Driven Modelling, Hybrid (Data-Physics) Modelling, Examples of Physics Driven Modelling: DT of a Propeller of a Drone, DT of a ceiling fan, Bio-Mechanical DT of human body; Examples of Data Driven Modelling: DT for RUL of a Battery, DT for traffic Mobility in Bangalore, DT of RUL of GUT; Hybrid Modelling: Heart Digital Twin, DT for Solar Array, DT for CAR using OBD., Case Study: Manufacturing, Case Study: Healthcare, Case Study: Buildings, Case Study: Transportation & Logistics. 14 Hours Unit 2: Foundations and Techniques in 3D View Synthesis Manual 3D modelling and mesh editing, Point cloud to mesh conversion, Poisson surface reconstruction, Ball-pivoting algorithm, Alpha shapes and Delaunay triangulation, Camera models and calibration, Epipolar geometry and depth estimation, Structure from Motion (SfM), Multi-View Stereo (MVS), Depth Image-Based Rendering (DIBR), Forward and backward image warping, Neural Radiance Fields (NeRF)							
	Unit 3: System Modelling and Introduction to Simulation, Sy Principles, The Event Schedu Performance, Verification, Cal	I Simulation stem and System Envir Iling/Time Advance Al ibration and Validatior	onment, D gorithm, I 1.	iscrete Event nput Modell	t System Si ing, Estim	1 mulation, (ation of A	4 Hours General bsolute	

	Unit 4: Digital Twin & Cyber Security. Digital twins and cybersecurity, Security Framework, Digital twins threat modelling, Common attacks on digital twins, Common attacks on digital twins, Digital twin authentication and identification challenge, IDS, IPS, Authentication Methods, Communication Channel Protection, building cyber resilience in digital twins, Privacy Framework, Lack of Privacy, and trust, Privacy by Design, Enhancing trust with block chain integration. 14 Hours
TextBook(s):	 Building Industrial Digital Twins by Shyam Varan Nath & Pietervan Schalkwyk, by Packt Publishing Ltd. JerryBanks,JohnS.CarsonII,BarryL.Nelson,DavidM.Nicol: Discrete-Event System Simulation, 5th Edition, Pearson Education, 2010. Girod, Bernd, Günther Greiner, and Heinrich Niemann, eds. <i>Principles of 3D image</i> <i>analysis and synthesis</i>. Vol. 556. Springer Science & Business Media, 2013.
Reference Book(s):	 Diab,W.W.,A.Ferraro,B.Klenz,S.W.Lin,E.Liongosari,W.E.Tannous,andB.Zarkout. "Industrial IoT Artificial Intelligence Framework." (2022): 1-59. El Saddik, Abdulmotaleb, ed. <i>Digital Twin for Healthcare: Design, Challenges, and</i> <i>Solutions</i>. Elsevier, 2022.
Course Outcome	 Conceptualize a Digital Twin and build its characteristics and input output parameters. Use either manual or algorithmic techniques to model the structural twin of the DT. Translate the conceptualized Digital twin application into a Simulation model – a Time advanced discrete event system simulation. Collaborate effectively with peers on practical projects and demonstrate the ability to apply Digital Twin and Extended Reality solutions to real- world problems, such as improving operational efficiency, enhancing security, and reducing costs.

Course Code	UE23CS342BA8	Course Title	Cloud Security					
Category	Elective	Hours per week/	L T P		S	с		
		Credit Assigned	4 0 0 4 4					
Semester	6	Type of Course	Elective - III		- -			
Al Tools /Tools/Languag es	C/C++/JAVA/ Python using OpenGL.	Desirable Knowledge	-					
Prelude	This course introduces fundar compliance, and incident resp secure cloud architectures wi	mental cloud security co oonse. Through hands-o nile integrating DevSecC	oncepts, covering threats, access management, encryption, on labs in AWS, students will learn to design and implement Ops practices.					
Course Objectives:	 Introduce cloud com environments. Develop understand across hybrid and m Apply secure softwa configuration manag Equip learners with planning. 	puting models, security ing of secure cloud arch ulti-cloud setups. re development practico gement. skills for cloud threat de	urity challenges, and regulatory frameworks relevant to cloud architecture, identity management, and data protection actices, including DevSecOps, container security, and cloud at detection, incident response, and disaster recovery				buol:	
Course Contents	planning. Unit 1: Cloud Security Intro and Access Management Introduction to Cloud Computing & Security Challenges: Cloud Computing Models(IaaS,PaaS,SaaS), Deployment Models(Public,Private,Hybrid,Multi-Cloud),SecurityChallengesinCloudEnvironments; Cloud Security Frameworks & Compliance: Shared Responsibility Model, Key Regulations: GDPR, SOC 2, PCI DSS, HIPAA, Cloud Security Standards: ISO 27017, NIST 800-144; Cloud Threats & Risk Assessment: OWASP Cloud Threats, Risk Management Frameworks(FAIR, NIST); Identity & Access Management (IAM) in Cloud: Role-Based AccessControl (RBAC) & Attribute-Based Access Control (ABAC), Identity Federation & Single Sign-On (SSO), Multi-Factor Authentication (MFA) & Zero Trust Security, IAM in multicloud. Unit 2: Cloud Security Architecture & Access Control Secure Cloud Networking & Data Protection: Virtual Private Cloud (VPC) & Software-Defined Perimeters, Encryption Techniques: Data at Rest, Data in Transit, Data in Use, Cloud Key Management Systems (AWS KMS); Container & Serverless Security: Securing Docker & Kubernetes, Serverless Security Best Practices (AWS Lambda), Container Runtime Security & Image Scanning, Multi Cloud Security Architecture. 14 Hours 14 Hours 14 Hours 11 11 11 13: Secure Software Development in Cloud Security Posture Management (CSPM), Infrastructure as Code (IaC) & Security Automation, Supply Chain Security & Code Vulnerability Scanning; CloudApplicationSecurity:SecureAPIDevelopment&AuthenticationMethods,WebApplicationFirewalls (WAF) & API Gateways, Security Best Practices for SaaS Applications, Challenges of Multi cloud applications. 14 Hours 14 Hours 1							

Reference Book(s):	 Mastering AWS Security: Create and maintain a secure cloud ecosystem by Albert Antony,Oct 2017,1st Edition, published by Packt. Practical Cloud Security by ChrisDotson Copyright©2019 ChrisDotson. Published by O'Reilly
	 Media. 3. Empirical Cloud Security: A Guide To Practical Intelligence to Evaluate Risks and Attacks by Aditya K. Sood, Apr 15, 2021, 1st Edition, published by Packt 4. Implementing DevSecOps Practices: Understand application security testing and secure coding by integrating SAST and DAST by Vandana Verma Sehgal, Dec22, 2023,1stEdition,published by Packt
Course Outcome	 Understand the core security challenges in cloud environments and apply identity and access management (IAM) principles to secure cloud resources. Implement network security measures, encryption techniques, and secure virtualization methods. Design secure cloud architectures, integrate DevSecOps practices to enhance security in cloud- native applications. Analyze, detect and mitigate cloud security threats using security monitoring tools.

Course Code	UE23AM343BB1	Course Title	Natural Language Processing with Deep Learning				
Program	B.Tech CSE(AI & ML)	Hours per week/	L	Т	Р	S	С
		Credit Assigned	4	0	0	4	4
Semester	6	Type of Course	Elective -	· IV			
Al Tools /Tools/Languag es	Python, Pytorch, and NLP libraries such as Spacy, NLTK, Open AI, and Huggingface transformer models.	Desirable Knowledge	UE23AM432AA1 - Advanced Foundations for Machine Learning, UE22AM352A - Machine Learning. Prior exposure to text mining and classical NLP techniques in UE23AM342AA3 - Social Computing will be helpful.				
Prelude	This comprehensive course on modern NLP deals with the main learning challenges in NLP, i.e., semantic disambiguation for natural language understanding (NLU) and generation (NLG). Modern NLP techniques structure this learning problem as an end-to-end deep learning problem compared to the earlier generation approach of using a stack of general-purpose linguistic structures of syntax and semantics. This course focuses on the current generation of NLP, starting with deep learning-based NLP and ending with RAG-based NLG tasks. This is not a course on LLM but a course on modern NLP, i.e., it provides an end-to-end coverage by acquainting students with the various NLU and NLG tasks, training and tuning strategies of models for NLU and NLG tasks,						
Course Objectives:	 Learn basic neural NLP building b Learn the internals and pre-traini Learn the internals of the Causal optimization methods, and multin Learn Natural Language Generati 	locks. ng strategies of the I Decoder-based La modal NLP. on(NLG) using Retri	he Pretrained Large Language Models for NLU tasks. Large Language Models for generative tasks, model				
Course Contents:	Unit 1: Fundamentals of Neural NLP Classical NLP - Language model: n-gram language model. Smoothing. Perplexity as an evaluation measure. Basic Text Mining – text segmentation, entity recognition, coreference resolution, dependency parsing, and relation extraction. Natural Language Understanding (NLU) and Natural Language Generation (NLG) tasks. Sparse models for vector semantics: TFIDF and Pointwise Mutual Information(PMI). Distributional semantics – Word2Vec (Skip- gram, CBOW), GloVe, fastText. Convolutional neural network for NLP -Finding a pattern in text. Neural sequence model - Encoder Decoder architecture, Autoregressive vs. Teacher Forcing in sequence models. Contextual Embedding – ELMo. Transfer Learning – Scenarios, Transductive vs. Inductive transfer learning, Catastrophic Forgetting, and Lifelong Learning. Multitask Learning – soft and hard parameter sharing, hierarchical multitask.						sure. Basic nd relation rse models 2Vec (Skip- I sequence Contextual stastrophic multitask.
	Unit 2: Modelling and Pre-training Stra Transformer: attention, self-attention, m positional embedding, residual connectio Architecture, Pretraining – MLM and NSP factorized embedding parameterization, ELECTRA - Replaced Token Detection (Abstractive, BERT for summarization, BAR unified text-to-text framework. Pegasus – combining local windowed attention, o Translation: Vauquois Triangle and challen encoder. XLM- cross-lingual LM, maskedL objective from XLM, Translational languag based NLU tasks – PERPLEXITY, BLEU, ROU	tegies in Pre-train asked self-attentio objectives, Fine-tu cross-layer paramo RTD) task. Benchn T– denoising pre-tr Gap Sentence Gen dilated sliding win ges, mBART and mE M (MLM), Causal L e model (TLM). Ref IGE, METEOR, BERT	ed Langua n, cross-at tion. Text ning. RoBE eter sharin nark– GLL aining. T5 eration (G adow atte BART-50–1 M (CLM).X erence-bas Score, Bur	ge Models tention, o Classificat RTa– pret ng. DistillE JE. Text S – Denoisi SG) pre-tra ntion, an multi-lingu (LM-RoBEI sed and Re stiness,QA	s(PLM) fo co-attentio ion: BERT raining w BERT - kn Summariz ng autoer aining obj d global ial pretrai RTa – mo eference-1 Eval, BLE	r NLU task on, causal - Tokeniza ithout NSF owledge o ation: Ext iccoder in p jective. Lou attention ning, deno dified RoB free metric URT, GRUE	14 Hours s attention, ation(BPE), P. ALBERT - distillation. ractive vs. retraining, mgFormer– . Machine ising auto- ERTa,MLM cs for PLM- :N. 14 Hours

Computer Science and Engineering(Artificial Intelligence and Machine Learning)

ITVERSITY	
	Unit 3: Language Models for Natural Language Generation(NLG) tasks and Multimodal NLP
	Types - Base, Instruction-tuned, and fine-tuned LLM, Small Language Model (SLM). Bias, Hallucination, and Emergent Abilities in LLM. GPT –Architecture, Building GPT like LLM. Training in ChatGPT vs. GPT. Instruction Tuning - Limitations of pre-training and fine-tuning in pre-trained Language model (PLM), Instruction Tuning in Google FLAN, TO. Model Architecture - Encoder only, Encoder Decoder, Causal Decoder, Prefix Decoder. Causal Decoder models–contextual embedding, decoding strategies. Hyperparameters – temperature, frequency penalty, presence penalty, context width, and max response. LLMs for NLG task – GELU and ADAMW in GPT, GPT1 to GPT3, Llama - Rotary Positional Embedding (RoPE), Others - InstructGPT, GPT-NeoX-20B, Redpajama, Dolly, Falcon, Alpaca. Model Optimization -Hyperparameter tuning, Pruning of model, Model distillation. Prompt-based tuning – In context Learning, hard vs. soft prompt, Prefix tuning. Parameter efficient fine-tuning (PEFT) – Quantization, LoRA, QLORA, RLHF. Metrics for NLG tasks – Reference-based as in NLU, Reference-free (Supert, ROUGE-C, BLANC, Burstiness), and LLM-based metrics (GEMBA, G-eval). Multimodal NLP – Semantic challenges, complexities in figurative language constructs. Three generations of multimodal NLP - VQA, Visual Language Model, and multimodal LLM(MLLM). Architectures – multimodal converter and perceiver. Technologies- ViT, CLIP, Q-Former. Multimodal LLM–BLIP2, FLAMINGO, LLAVA.
	14 Hours
	Unit 4: NLP Tasks (RAG) as a combination of IR and NLG tasks RAG in NLP - a combination of Information Retrieval (IR) and NLG problems, Design of RAG-enabled systems.RAG indexing pipeline – Chunking, Embedding, and Storage. RAG generation pipeline – Retrieval, Augmentation, and Generation. Prompt engineering in Augmentation -Zero-shot, Few-shot, Chain of thought, Contrastive chain of thought, Tree of thought, Thread of thought, and ReACT prompting. RAG Progression - Naïve, Advanced, and Modular RAG. Advancement in Advanced RAG- Retrieval, Augmentation, and Generation. Other variants of RAG in NLP – Knowledge Graph(KG) RAG, Multimodal RAG, RAG with cognitive architectures -C-RAG and SELF-RAG. Agentic RAG – implementation APIs. RAG evaluation metrics– Retrieval metrics for IR Tasks (Precision@K, MAP, MRR, NDCG), RAG Metrics for NLG tasks (RAG Triad- context relevance, answer relevance, and Groundedness).RAG Evaluation Frameworks - RAGA.
Text Book(s)	14 Hours 1 Speech and Language Processing Jurafsky and Martin 3rd edition draft dated Jan 7th 2023 available
	 Natural Language Processing with Transformers – Building Language Applications with Hugging Face, by Lewis Tunstall, Leandro von Werra & Thomas Wolf, OREILLY. Build a large language model from scratch – Sebastian Raschka, Manning, 2024.
Poforonco	1 Natural Language Processing with Dyterch, Ruild Intelligent Language Applications Using Deep Learning
Book(s):	by Delip Rao and Brian McMahan, OREILLY.
.,	2. Transformers for Natural Language Processing, Denis Rothman, Packt (2nd Edition, 2022).
	3. CS22N (Natural Language Processing with Deep Learning) : Stanford/Winter, 2025.
	4. Many web resources and published papers about the language models mentioned.
Course	 Should be able to use a basic Neural NLP workflow. Should be able to use transformer-based pre-trained LLM for standard NLLL tasks
Outcome	 Should be able to use transformer based pre-trained LLW for standard NLO tasks Should be able to understand and appreciate the internals of LLM for NLG tasks, model optimization.
	and fine-tuning methods, and Multimodal NLP
	• Should be able to use a combination of techniques (retrieval and generation) for advanced NLG tasks.

Course Code	UE23AM343BB2	Course Title	Deep Reinforcement Learning				
Program	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С
i rogram		week/	Δ	0	0	4	4
		Credit	4	U	U	4	4
Semester	6	Type of Course	Flective -	- IV			
AI Tools	Pytorch, Python Libraries and tools.	Desirable	Machine	Learnin	g,		
/Tools/Languag		Knowledge	Advance	d Found	ations for	Machine	
es			Learning				
Prelude	The goal of reinforcement learning is to ena	ble AI agents to n	make optimal decisions in complex, dynamic				
	environments by interacting with them and reco	eiving rewards or pe	enalties for	their ac	tions. Dee	p Neural I o docision	Network
	on unstructured data. This advanced Deep L	earning course foc	uses on D	eep Lea	arning ena	abled met	hods of
	Reinforcement Learning. The course starts by	revisiting the foun	dations of	f Reinfo	rcement L	earning a	nd then
	follows up with Deep-Q network, Policy Gradi	ent Methods, and A	Actor-Criti	c metho	ds. The co	ourse end	s with a
	discussion on advanced topics such as distribute	ed DQN, multi-agen	t reinforce	ment le	arning etc	•	
Course	 Get familiar with the fundamental prin 	ciples of reinforcem	ent learni	ng and t	he scope c	of deep lea	irning in
Objectives:	IT. Get familiar with the Deen-O network						
	 Get familiar with Policy-Gradient and A 	ctor-Critic methods	5.				
	 Get Familiar with advanced topics such 	as Distributed DQ	N, Multi-ag	ent DQN	۱.		
Course	Unit 1: Introduction to Reinforcement Learnin	g					
Contents:	The Multi-arm Bandit – exploration and exploita	ation, epsilon greed	y strategy,	Softma	x selection	policy. Sc	olving
	Ad Placement – state, action, and reward, contextual bandit, solving contextual bandit by building a model –						
	Functions, and Optimal policy.	(WDF), Fredicting it	iture rewa		Folicy full	ictions, va	lue
	· · · · · · · · · · · · · · · · · · ·					1	4 Hours
	Unit 2: Deep-Q networks to predict best states and actions						
	State-space, action-space, state-value, action-value, policy function, Q-function, and Q-learning. Deep-Q						
	network with Deep Learning. Off-policy learning and On-policy learning. Preventing Catastrophic forgetting						
	14 Hours						
	it 3: Policy-Gradient Method and Actor-Critic Methods						
	Policy Gradient Methods - Neural network as th	ne policy function: s	olicy function: stochastic policy gradient, exploration.				
	Policy Gradient Algorithm- objective function, a	on, action reinforcement, log probability, and credit assignment.					
	The REINFORCE algorithm as the implementation	on of the Policy Gra	Policy Gradient method.				
	Actor-critic methods – combining Q-learner wit	h Policy-learner, Di	stributed t	raining,	Advantage	e Actor-cri	tic,
	and N-step Actor-critic.						
	Unit 4: Advanced Tonics					1	4 Hours
	Interdisciplinary applications – traffic network.	autonomous driving	, games, fi	inance. ł	healthcare	. Natural	
	Language Processing etc. Distributional DQN – i	ssues with Q-Learni	ng, Distrib	utional I	Bellman Eo	quation, D	ist-
	DQN implementation. Multi-agent reinforceme	nt learning – neight	orhood Q	-learning	g, mixed co	ompetitive	<u>}</u> -
	collaborative game. Inverse Reinforcement Lear	rning. Interpretable	reinforcer	nent lea	rning.		
Text Book(c):	1 "Reinforcement Learning: An Introdu	ction" By Dichard	S Sutton	and Ana	row G P	1 arto (2nd	A HOURS
TEAL DOUK(S):	2020), http://incompleteideas.net/boo	ok/RLbook2020.ndf	S. SULLOIT		11 CW U. Da	מונט נצווט	LuitiOII,
	2. "Deep Reinforcement Learning in Pyth	ion: A Hands-On In	troduction	", By La	ura Graess	ser and W	ah Loon
	Keng (Addison-Wesley Data & Analytic	s Series, 2020).					
	3. Practical Deep Reinforcement Learnin	g with Python: Con	cise Imple	mentatio	on of Algo	rithms, Si	mplified
Poforonco	Maths, and Effective Use of TensorFlov	w and PyTorch, Ivan	Gridin, 20	022, BPB	/latoct/		
Book(s):	2. David Silver's RI Course (UCI /DeenMir	nd): https://spinning	arsilver wo	.com/en ordpress	com/teac	hing/	
500K(3).		may. <u>mepsigraavidsti</u>		1 UPI C33	.com/ teat	<u></u>	

Computer Science and Engineering(Artificial Intelligence and Machine Learning)

UNTVERSITY	
Course	At the end of this course, the student will be able to:
Outcome	• Become comfortable with the scope of Reinforcement learning and the opportunity that Deep Learning offers to it.
	 Become comfortable in implementing Deep-Q Learning.
	Become comfortable in implementing Policy-gradient and Actor-Critic methods.
	 Deliver a meaningful course project using Deep Reinforcement Learning.

Course Code	UE23AM343BB3	Course Title	Deep Learning for Images				
Program	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С
		week/ Credit Assigned	4	0	0	4	4
Semester	6	Type of Course	Elective – IV				1
AI Tools /Tools/Language s	TensorFlow, PyTorch, OpenCV, Jupyter Notebooks.	Desirable Knowledge	Machine Learning, Advanced Foundations for Machine Learning.				
Prelude	This advanced deep learning course deals w Deep Learning techniques for diverse tasks While it does not focus on Image Processir with Deep Learning and does not deal with an in-depth tutorial of generative AI for in models. The course ends with a discussion Learn deep learning techniques fo	vith deep learning tec such as Image Classifi ng, it specifically focu advanced computer nage data i.e. both tr on various interdiscip r computer vision tas	chniques with image data. This course deals with fication, Image Recognition, and Image Synthesis. uses on computer vision tasks that perform well er vision tasks. Additionally, this course provides traditional deep learning methods and diffusion iplinary applications and evaluation approaches.				
Objectives:	 Learn deep learning based generat Learn advanced deep learning tech Understand evaluation methodolo 	tive techniques such nnique for Image Syn gies and metrics for	as VAE, GAN, and ViT. hthesis i.e. Diffusion Models.				
Course Contents:	Unit 1: Deep Learning based Computer Vision – LeNet, VGGNet, AlexNet. Wide CNN Alternative Connectivity patterns - DenseNet v1, MobileNet v2, SqueezeNet.Image Class and strategies. Transfer Learning with VGG, – Object recognition with YOLOv3 and R-CN VGGFace2, and FaceNet.	ision Tasks n, an interdisciplinary architecture–Incep et, Xception, and SE-N sification by Transfer GoogLeNet, and Resl IN, Face Detection, Fa	nary field. First Generation Deep CNN Architectures ceptionV1, InceptionV2, InceptionV3, ResNetXt, SE-Net. Mobile Convolutional Network – MobileNet sfer Learning with Pre-trained CNN models - steps ResNet. Deep Learning based Computer Vision tasks n, Face Identification, Face Classification – OpenCV,				nitectures ResNetXt, AobileNet els - steps ision tasks - OpenCV,
	Unit 2: Deep Learning for Image Synthesis Evolution of image synthesis – Deep Neural Network, GAN, Transformer, Diffusion models and Latent Diffusion models. Taxonomy for Generative AI for image synthesis–Autoencoder, Adversarial Network, Transformer Diffusion Models. Choosing the right architecture. Variational Autoencoder: VAE, βVAE, cVAE. Latent space interpolation and disentanglement. Generative Adversarial Networks (GANs): Optimality in GAN, Adversaria Training, and training challenges. Variants of GANs- DCGAN, WGAN, CycleGAN. Evaluation of GANs. Transformer based Vision Models: ViT, DeiT and SWIM. Unit 3: Advanced Deep Learning for Image Synthesis Introduction to Diffusion Models. Forward Diffusion – mathematical foundation. Reverse Diffusion – mathematical foundation. U-net architecture – regular vs. transposed convolution. U-net architecture for Densitiere – Marchitecture – Pairline – Diffusion – Mathematical foundation. U-net architecture for					14 Hours Diffusion nsformer, ent space dversarial nsformer- 14 Hours fusion – cture for Diffusion	
	Probabilistic model), Comparing DDPM wi Group Normalization, GELU, Sinusoidal po Hybrid Architecture – Latent Diffusion Mod	th VAE and GAN. Op sition embedding, e fels.	Odel with U-Net- DDPM (Denoising Diffusion Optimization Techniques for Diffusion models – , etc. Classifier-free Diffusion Guidance (CFDG).				
	Unit 4: Interdisciplinary Applications, Eval Interdisciplinary Applications-Object detect Imaging, Autonomous Vehicles, Surveillance and Object Recognition Tasks – Intersection Precision, F1 Score. Metrics for Image Synt Qualitative approaches – visual inspection inception Distance, Kernel Inception Dist Evaluation techniques – VAE, GAN, and Diff	uation, and Metrics ion and recognition, systems, and Genera over union (IoU), Pre thesis tasks - Challen , case studies. Quar ance, fidelity, and I usion models.	Image cl ative mo ecision, R ges of th titative Diversity	assificatio delling. M lecall, Aver ne evaluat approache of genera	n and segn etrics for In age Precis ion of gen es - Incept ated imag	nentatior mage Cla: ion, Mea erative m ion Score es. Mode	n, Medical ssification n Average nodels i.e. e, Frechet el-specific

14 Hours	
nning Book, 2020.	t Book(s): 1.
d Vision", Stanley Chan, January 1925,	erence 1. k(s):
eliski, January 2023, Springer.	2.
n tasks.	rse •
s tasks using VAE, GAN, and ViT.	come •
s tasks using Diffusion Models.	•
ge relates tasks.	•
s tasks using Diffusion Models. ge relates tasks.	•

Course Code	UE23AM343BB4	Course Title	Machine Learning for Finance				
Brogram	B.Tech CSE(AI & ML)	Hours per	L	Т	Р	S	С
Program		week/	4	0	0	4	4
		Credit Assigned					
Semester	6	Type of Course	Elective –	IV			
AI Tools	TensorFlow, PyTorch, OpenCV, Jupyter	Desirable	Machine I	Learning.			
/Tools/Languag	Notebooks.	Knowledge	Advanced	l Foundat	tions for Ma	achine Le	arning
es			will be an advantage .				
Prelude	Today, the value of Machine Learning in final Chief Investment Officers rely on ML technic dataset. This Applied Machine Learning course scientists in the Finance domain. This case-stu apply different machine learning techniques in Learn applications of regression and	nce has become cru jues to help them d e is an introductory, udy driven course den finance domain-sp supervised learning	Icial. Analysts, Portfolio Managers, Traders, and derive useful information and insights from the interdisciplinary course designed for future data edicates its units to a series of case studies that pecific use cases.				
Objectives:	 Learn applications of dimensionality 	reduction and unsur	ervised lea	rning in I	inance		
Objectives.	 Learn applications of reinforcement I 	earning in finance		111118 1111	mance.		
	 Learn applications of graph neural ne 	twork in finance					
		work in mance.					
Course Contents:	Unit 1: Regression and Supervised Learning i Machine Learning Recap: Time series breakdor (ARIMA). Deep Learning approach to Time Ser Natural Language Processing recap: preproces Case study 1: Stock Price Prediction using supe learning. Case study 3: Modelling investor risk Machine Learning model for Derivative pricin Default probability. Case study 6: Trading stra	n Finance wn, Autocorrelation ries modelling. Mod ssing, feature repres rvised learning. Case tolerance and Robo ng. Case Study 5: S itegy based on socia	and statior ifying time entation, ar Study 2: Yi D-advising u Supervised I media sen	narity, Tra series da nd Infere eld curve using mad classifica timent a	aditional Tin ta for regre nce. prediction chine learni tion mode nalysis.	me Series ession me using su ng. Case to pred	s models odelling. pervised study 4: ict Loan
						1	4 Hours
	Dimensionality Reduction and Cluster Dimensionality Reduction Techniques recap: Hierarchical clustering, Affinity propagation clu Case study 8: Clustering for Grouping investor	ring in Finance PCA, K-PCA, t-SNE Ustering. Case study s. Case Study 9: Port	t-SNE. Unsupervised Learning recap: K-means and tudy 7: Finding an Eigen portfolio for asset allocation. Portfolio allocation using Hierarchical Clustering. 14 Hours				
	Unit 3: Reinforcement Learning in Finance						
	Reinforcement Learning recap: RL compone model based and model free. Model free me based (Policy Gradient).Case Study-10: Rei Reinforcement Learning based Portfolio Alloc	nts and modelling thods –value-based inforcement Learnin ation.	ng framework. Reinforcement Learning models– sed (Q Learning, SARSA, Deep-Q network), Policy- arning based Hedging Strategy. Case Study-12:				
	Linit 4. Anti Monoy Loundaring in Ditasin ast	huork using Crock		vork		1	.4 Hours
	Money laundering – Introduction, Illicit transa framework, graph convolution network, grap multilayer perceptron model to detect illicit to transactions.	ctions in Bitcoin net oh attention networ ransactions, using G	work. Grap k. Understa raph Neura	vork h Neural anding E l Networ	Network – lliptic Bitco k (GCN, GA	message in datase T) to det	e passing et, using ect illicit
						1	4 Hours
Text Book(s):	1. Machine Learning & Data Science Bl	ueprints for Finance	, Hariom Ta	atsat, Sa	hil Puri & B	rad Look	abaugh,
	OREILLY, 2020 2. Python for Finance: Mastering Data-I	Driven Finance, Yves	Hilpisch, O	'REILLY, I	2019.		
Reference	1. Advances in Financial Machine Learn	ing, Marcos López d	e Prado, W	iley, 2018	3		
Book(s):	2. Hands-On Machine Learning for Algo	rithmic Trading, Ste	fan Jansen,	Packt, 20	019		
	3. Machine Learning for Asset Manag	ers (Elements in Q	uantitative	Finance), Marcos	López de	e Prado,

INTVERSITY	-
	Cambridge University Press, 2020.
Course Outcomes	 Become comfortable in building classification and regression models for financial applications. Become comfortable in building unsupervised learning-based models for financial applications. Become comfortable in building reinforcement learning based models for financial applications. Become comfortable in building graph neural network-based models for financial applications.

Course Code	UE23AM343BB5	Course Title	Large Language Models Agents			ents	
Program	B.Tech CSE(AI & ML) Hours per		L	С			
riogram		week/ Credit	4	0	0	4	4
		Assigned					
Semester	6	Type of Course	Elective -	- IV			
Al Tools /Tools /Languag	HuggingFace, LangChain, CrewAl,	Desirable Knowledge	Python, F	undament	als of Ma	ichine Lear	ning,
es	Actions, Deployment: Streamlit, FastAPI.	Kilowieuge	INLF DASIC	.5.			
Prelude	This course goes beyond foundational autonomous AI systems built on top of L LLMOps frameworks. The emphasis is strategies, and real-world domain agentic	understanding of LMs, integrating cu on system-level t applications.	Generative AI and introduces students to utting-edge tools like LangChain, AutoGPT, and thinking, engineering workflows, deployment				
Course Objectives:	 Learn Understand the software e Explore the mechanics of building Gain hands-on experience with to Explore emerging practices in LLN Implement domain-specific agent 	ngineering, custom g intelligent agents bols like LangChain, MOps, edge deployr ts with responsible	ization, and deployment lifecycle of LLMs. using LLMs in real-world scenarios. AutoGPT, CrewAl, and vector stores. ment, and model observability. and explainable behavior.				
Course Contents:	Differences between GenAl Applications v Templates, Prompt Flow, Task decompt Thought, Autonomous Agents: Planner-Ey vs. BabyAGI vs. CrewAl overview, LangCha use, create an autonomous task handler.	s. Agentic Systems, osition: Zero-shot, cecutor pattern, Me ain Ecosystem: Chai Fools: LangChain, O	neering stems, Introduction to Prompt Engineering: Structure, sshot, Few-shot, Chain of Thought, ReAct, Tree-of- ern, Memory and Tools, Agent Frameworks: AutoGPT n: Chains, Agents, Tools, Practical Lab: LangChain tool nain, OpenAI API, LM Studio, Jupyter Notebooks.				
	Unit 2: Customization Techniques: Fine-T Fine-Tuning LLMs: Quantization, LoRA, Ad HuggingFace PEFT), Reinforcement Lear preferences, Datasets for fine-tuning: (Compression and Transfer: TinyGPT, Ef educational content. Assignment: Fine-tur Transformers & PEFT, TRL (for RLHF), Weig	Funing, RLHF, and S apter Layers, Promp ming with Human Open Assistant, Ar fficient transforme he a distilled model to ghts & Biases.	14 Hours and Soft Prompts Prompt Tuning and Soft Prompts: PEFT libraries (e.g., uman Feedback (RLHF): Aligning LLMs to human nt, Anthropic HH, Red-Teaming examples. Model formers, Case Study: Fine-tuning a Q&A bot for nodel for a legal chatbot use case. Tools: HuggingFace				
	Unit 3. Agent Denloyment Engineering a	nd MI Ons for LI Ma	-			14	Hours
	LLMOps Introduction: CI/CD for LLMs, m detection, input sanitization, Vector Da Frameworks: Docker, FastAPI, Streamlit applications for low-resource LLM agent Dockerize a LangChain agent with logg LangServe, Streamlit. Unit 4: Domain-Specific Autonomous Ag Healthcare Agents: Medical reasoning ass bots, syllabus planners, AgriTech Agents: N Agents: Document summarizers, legal se complex workflows, Ethical Concerns: Explainable Agents: LLM interpretability, t a real-world use case (e.g., education	model versioning, Model Monitoring: Prompt drift, hallucination Databases: FAISS, Pinecone, ChromaDB, Weaviate, Deployment nlit, LangServe, Edge AI for Agents: Jetson Nano, Coral, TinyML ents, Pipelines: Apache Airflow, DVC for experiment tracking, Lab: ogging and monitoring. Tools: Docker, GitHub Actions, Airflow, 14 Hours Agents & Ethics assistants, symptom-checkers, EdTech Agents: Personalized tutorin s: Voice-based farmer advisory agents (tie-in with Kisan Vaani), Lega search assistants, Multi-agent Collaboration: CrewAI hands-on for s: Bias propagation, jailbreaking, LLM agent hallucination risks /, traceability of decision steps. Group Project: Multi-agent system for					ation ment nyML Lab: flow, lours utoring , Legal on for risks, em for
	Explainable AI libraries.	_ ,		, -	·	14	Hours

Computer Science and Engineering(Artificial Intelligence and Machine Learning)

ERSTTY	
Text Book(s):	1. Sinan Ozdemir - Quick Start Guide to Large Language Models, Addison-Wesley, 2023
Reference	1. Denis Rothman - Transformers for NLP, Packt, 2023
Book(s):	2. Emily Webber - Pretrain Vision and LLMs in Python, Packt, 2023
	3. Sebastian Raschka - Machine Learning Engineering with MLOps, Packt, 2023.
Course	Build and customize LLM pipelines using advanced prompting and feedback mechanisms.
Outcomes	 Implement autonomous AI agents with reasoning and memory.
	 Deploy LLM-powered applications using LangChain, AutoGPT, and MLOps pipelines.
	 Apply agent frameworks across domains such as health, agriculture, education, and law

Course Code	UE23CS343BB6	Course Title	Information Security				
Program	B.Tech CSE(AI & ML)	Hours per week/ Credit	L	т	Р	S	с
		Assigned	4	0	0	4	4
Semester	6	Type of Course	Elective - IV				
Al Tools /Tools/Languages	SEED Labs VM, Scapy, BurpSuite,Metasploit, Nmap, etc.	Desirable Knowled ge	-				
Prelude	This course will present secu architecture, design, coding, ar to" with hands-on sessions, ass	rity aspects from a nd testing. Students signments, and some	rom a secure software life cycle process – requirement, dents will have opportunity to dwell well in to technical"how I some case study discussions.				
Course Objectives:	 To understand various To learn attack and de To understand the cor To learn about the mo To understand and ap 	cyber threats and attacks and secure software development process. fence mechanisms for buffer overflow, shell shock attack,etc. cept of threat modelling and its application. st common web application security vulnerabilities. oly various penetration testing techniques and tools.					
Contents	Unit 1: Introduction and Privile Software Threats, Attacks and Security vs. privacy, Cyberattac cases and Misuse cases, Mis Development Life Cycle (SDL) programs, Set-UID mechanism, privilege. Environment variable linker, External program, and Shellcode attack on Set-UID an Unit 2: Software Vulnerabilitie Buffer overflow attack: Progra attack, Attacks with Unknown a to-libc attack: Introduction, Lau functions and format string, Countermeasures. Case study Morris, Stuxnet worm, Ransom Unit 3: Threat modelling and E Threat Modelling, Trust Bounc and variants, Defensive tactices basics, Attacks on HTTP GET requests and its problems, CSR Unit 4: Web application securi (XSS/CSS)Attack: CSS attack, CS attack: Introduction to SQL, Countermeasures. Static analy testing tools and Fuzzing, Patch	ege Escalation Attac I Vulnerabilities, CIA ck Types, Anatomy of suse case legend, S . Case Study: Targe Superman story, At es and attacks: Envir I Library. Lab: Set- d CGI programs. es and Malicious Sof am memory layout, address and Buffer si unch the attack part Vulnerable program : Target case study nware. Basic Web Security laries, Attack Surfac 5, and Technologies, and POST services, F attacks, Counter n ty and Penetration S attacks in action, S interacting with o ysis, Penetration technologies.	acks IA Triad, OWASP Top 10, CVE, Security and reliability, of an Attack, Security Concepts and Relationships. Use Security use case vs Misuse case, Secure Software get case study. Set-UID program: Need for privileged Attack surfaces, Invoking other surfaces, Principle of least vironment variables, Attack surface, Attacks via Dynamic t-UID program & Environment variables and attacks. 14 Hours oftware t, Stack and function invocation, Stack buffer-overflow size, Shellcode, Countermeasures & Defeating it. Return- rt I & part II. Format string vulnerability: Introduction to am, Exploiting the vulnerability, Code injection attack, dy. Malware and its Types, Malware analysis: Conifer, 14 Hours Acces, Brainstorming, Modelling Methods, STRIDE model es, Privacy Threats, Taxonomy and Types. Web security s, Cross Site Request Forgery (XSRF/CSRF): Cross-site measures. Case study: Apple-Privacy vs Safety. 14 Hours n Testing n, Self-propagation, Preventing CSS attacks. SQL injection database in web, Launching SQL injection attacks, testing: Introduction, Benefits, Drawbacks, Penetration 14 Hours				ibility, s. Use itware ileged f least namic ttacks. Hours erflow eturn- ion to ittack, onifer, Hours model ecurity ss-site Hours ection ttacks, ration Hours

TextBook(s):	1. "Computer & Internet Security: A Hands-on Approach", Wenliang Du, 2 nd Edition/3 rd Edition.
Reference Book(s):	 "Computer Security: Principles and Practice", William Stallings and Lawrie Brown, Pearson Education, 3rd Edition, 2014. "Secure Programming with Static Analysis", Brian Chess and JacobWest, Pearson Education, 2007.
Course Outcome	 Identify possible misuse cases in the context of software development. Defend against various attacks and how to write secure code. Apply threat modelling techniques to expose inherent vulnerabilities in applications. Design and develop secure web applications. Exploit software vulnerabilities and launch attacks.

Course Code	UE23CS343BB7	Course Title	Mobile and Autonomous Robot				
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	s	С
		Assigned	4	0	0	4	4
Semester	6	Type of Course	Elective - IV				
Al Tools /Tools/Languag es	C,C++,Python, ROS, Webots, AirSim, Gazebo	Desirable Knowledge	Introduction to Autonomous Systems with ROS , -Linear Algebra and its Applications				
Prelude	This course provides an i behind their design, prog planning, and navigation ROS/ROS2. The course co terrestrial and aerial rob	ntroduction to auto gramming, and contr , while gaining hand ombines theoretical otic platforms.	nomous robots, focusing on the principles and techniques rol. Students will explore key topics such as perception, ls-on experience through projects and simulation using foundations with practical applications across both				
Course Objectives:	 Design Understand the robotics. Learn the theoretical at Explore core topics in a Gain hands-on experience 	he evolution, curren and practical fundan cluding perception, l e with robot simulat	urrent trends, and research directions in autonomous mobile ndamentals of designing and operating autonomous robots. ion, localization, planning, and control. nulation and programming using ROS/ROS2.				
Course Contents	Unit 1: Introduction to Robotics and Locomotion: Robotics overview: Past, Present and Future; Robot Hardware and Software. Al in Robotics: Machine Learning Basics for Robotics. Locomotion: The basics of SOTA locomotion systems, Legged Robots, Wheeled Robots, Aerial Robots. Robot Kinematics, ROS overview: ROS/ROS2 for robotics, ROS architecture and communication protocols, ROS packages for robot hardware control. 14 Hours Unit 2: Perception Introduction to Perception, Sensors for Robots, Visual and inertial measurements: Gyroscope, accelerometers, IMU, GPS, Range sensors, camera vision and LiDAR. Fundamentals of Computer Vision and Image Processing and filtering, Feature Extraction: Object detection and Place Recognition, Stereo vision and 3D perception, Feature Extraction Based on Range Data (Laser, Ultrasonic).						
	14 Hours Unit 3: Localization Introduction and Challenges of Localization, To Localize or Not to Localize, Belief Representation, Map representation, Probabilistic Map-Based Localization: Markov localization, Kalman Filter localization, Autonomous Map Building: SLAM, EKF SLAM, Particle filter SLAM, GraphSLAM, Open challenges in SLAM 14 Hours						
	Unit 4: Planning and Navi Graph search and Potentia bubble band technique, Architectures. Revisiting Perspective, Applications	gation Introduction Il field path planning Curvature velocity Navigation using Re and Social Implicatic	Path Planning Dostacle avo techniques, einforcement ons.	g and Naviga idance: Bug a Dynamic v Learning an	i tion, Path pla algorithm, Vec vindow appro d Imitation le	nning: ctor field histo paches. Navig earning: A Ro 14	gram, gation botics Hours

TextBook(s):	 Introduction to Autonomous Mobile Robots (Intelligent Robotics and Autonomous Agents series) second edition by Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza Artificial Intelligence for Robotics Build Intelligent Robots that Perform Human Tasks Using AI Techniques By Francis X. Govers · 2018.
Reference Book(s):	 Introduction to Autonomous Robots: Nikolaus Correll, Magellan Scientific, 2016. ROS Robot Programming, ROBOTIS Co., Ltd. From the basic concept to practical programming and robot application. YoonSeok Pyo, HanCheol Cho, RyuWoon Jung, and TaeHoon Lim. Introduction to Robotics: Mechanics and Control 4th Edition, John Craig, ISBN-13: 978-0133489798, Pearson; 4th edition Probabilistic Robotics By Sebastian Thrun, Wolfram Burgard and Dieter Fox. ISBN-13: 978-0262201629, ISBN-10: 0262201623. Intelligent Robotics and Autonomous Agents series; 1st Edition
Course Outcome	 Explain the principles and applications of autonomous mobile robots, including their key components and system architecture. Identify and integrate appropriate sensors and actuators for robot perception and control. Develop and simulate robotic systems using ROS/ROS2 for navigation, planning, and hardware interfacing. Apply algorithms for localization, path planning, and obstacle avoidance in real or simulated environments. Design and implement autonomous robotic solutions for terrestrial and aerial platforms.

Course Code	UE23CS343BB8	Course Title	Security for Internet of Things				
Program	B.Tech CSE(AI & ML)	Hours per week/	L	т	Р	S	
		Credit Assigned	4	0	0	4	
Semester	6	Type of Course	Elective - IV				
Al Tools /Tools/Languag es	Wireshark, Yersinia, VoIP Hopper, Bettercap,aircrack-ng	Desirable Knowledge	Internet of Things				
Prelude	This course enables the le perform security testing of for protecting ourselves.	arner to understar on connected devic	o understand the security threats associated with Internet of Things and ected devices within our homes and enterprise to build a better model				
Course Objectives:	 Understand the threa Understand vulnerab IoT hardware and rad Enhance knowledge v Understand the vario 	reats of IoT devices. rabilities, possible attacks and learn the security testing methodology for networks, radio protocols. ge with hands-on experience on IoT security tools and attack analysis. arious Security measures to be adopted to secure IoT devices.					
Course Contents	Unit 1: Introduction to IoT Security Introduction to IoT Security, Traditional security vs IoT security, Basic concepts of IoT Architecture from security perspective, Challenges of IoT Security, OWASP Top 10security risks and consumer IoT security guidance, Threat Modelling for IoT attack, Common IoT threats, Network Hacking: VLAN hopping in IoT networks.						
	14 Hours Unit 2: Network Security and Hardware Security for IoT devices MQTT authentication, Analysing Network protocols: Wireshark dissector and Nmap Scripting Engine module for the DICOM protocol, exploiting zero-configuration Networking: UPnP, mDNS, DNS-SD, and WS- Discovery, Hardware Hacking: UART, JTAG, and SWD Exploitation- Hacking an STM32F103 microcontroller using UART and SWD.SPI and I2C, Firmware Hacking. 14 Hours						
	Unit 3: Radio Hacking and Smart IoT devices hacking Radio Hacking Short Range Radio: Abusing RFID, Bluetooth low energy, Medium Range Radio: Hacking Wi-Fi, Long Range Radio: LPWAN, Smart home, Hacking the smart home: Gaining physical entry to a building, cloning a keylock system's RFID Tag, Jamming the Wireless alarm.						
	Unit 4: Targeting the IoT E Playing back an IP Camer attacking a Smart treadmintegration, Hardware pro SSL pinning, Authorization 14 Hours	Ecosystem and Sec ra stream, Analysi nill, Secure desigr tection measures, n and access contr	Secure Design of IoT Devices ysing IP Camera Network traffic, Extracting the video stream, ign goals: Mitigate automated attack risks, Secure points of es, IoT IAM infrastructure: PKI for IoT, Revocation support: OCSP, ntrol with OAuth 2.0 Cryptographic Controls for IoT Protocols.				
TextBook(s):	1:"Practical IoT Hacking", Beau Woods, March 2021	Fotios Chantzis, Io , No Starch Press P	annis Stais, Paul ublishers, ISBN:	ino Calderon, E 978171850090	vangelos Deirmo 7.	entzoglou,	

Reference Book(s):	1:"Practical Internet of Things Security", Brian Russell, Drew VanDuren, Packt Publishers, 2 nd Edition.
Course Outcome	 Identify and describe the variety of IoT systems architectures, essential components and challenges specific to IoT systems. Analyze various network and hardware security mechanisms for IoT devices.
	 Gain hands-on experience on different tools to target IoT ecosystem. Analyze and apply appropriate security and privacy solutions for real-world applications.

Course Code	UE23CS343BB9	Course Title	Applied ML in IoT with Tiny ML					
Program	B.Tech CSE(AI & ML)	Hours per	L	т	Р	S	С	
		Assigned	4	0	0	4	4	
Semester	6	Type of Course	Elective - IV					
AI Tools /Tools/Languages	Arduino Nano33 BLE sense , Arduino IDE , Google Colab	Desirable Knowledge	-					
Course Objectives:	 Design and deploy s Preprocess sensor of resource consumpti Utilize tools like Te Integrate sensor dat applications. 	oy simple Machine Learning models on microcontrollers for various IoT applications. For data, optimize code, and evaluate the trade-off between model accuracy and nption. Te TensorFlow Lite Micro and TinyML Kit for TinyML development. r data acquisition, communication protocols, and datapipelines for real-time TinyML						
Course Contents	Unit 1: Foundations of Machine Learning Introduction to IoT & TinyML, The ML paradigm, Building blocks of DL, NN, Regression with Dense NN, Classification with Dense NN, Image Classification using CNN, Datasets and Model Performance Metrics, Preventing Overfitting. Unit 2: TensorFlow Lite for Microcontrollers & TinyML Kit What Is TensorFlow Lite for Microcontrollers?, Build Systems, Supporting a New Hardware Platform, Supporting a New IDE or Build System, Integrating Code Changes Between Projects and Repositories, Contributing Back to Open Source, Supporting New Hardware Accelerators, Understanding the File Format, Porting TensorFlow Lite Mobile Ops to Micro, TinyML Kit Overview, TinyML Kit Setup, TinyML Kit Sensor Testing, Sensor Testing, Sensor Fusion. Unit 3: Applications and Deployment to Microcontrollers (MCUs)-1 TF-Lite, TFL-Micro, TFL-Micro Hello- World example, KeyWord Spotting (KWD) using Edge Impulse, KDW dataset creation, Micro Speech Example, Workflow, Model development & testing, Person-detection example, Image classification. Unit 4: Applications and Deployment to Microcontrollers (MCUs)-2 Magic Wand: Building and Application, Training a Model, Building a Weather Station with TensorFlow Lite for Microcontrollers, Voice Controlling LEDs with Edge Impulse.							
TextBook(s):	 [1] Pete Warden and Daniel Situnayake, TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low- Power Microcontrollers, O'Reilly Media, 2020. [2] Vijay Janapa Reddi at Harvard and open-source collaborators, Machine Learning Systems with TinyML, Open- source collaborative-effort book, 2023-present. [3] Gian Marco Iodice and Ronan Naughton, TinyML Cookbook: Combine artificial intelligence and ultra- low-power embedded devices to make the world smarter, 2022. [4] Francois Chollet, Deep Learning with Python, Manning, Second Edition, 2021. 					no		

TTY	
Course Outcome	 Understand the fundamental concepts of ML,Deep Learning(DL),and their application in the IoT domain.
	UtilizeTensorFlow LiteMicro and TinyML Kit for developing and deploying ML models
	on microcontrollers.
	• Design and implement TinyML applications for various functionalities like keyword spotting,
	Image classification and sensor fusion.
	 Evaluate and interpret the performance of TinyML models on real hardware.